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Abstract
To date, deep learning models trained for computer vi-
sion tasks are the best models of human vision. This
work has largely focused on behavioral and neural re-
sponses to static images, but the visual world is highly
dynamic, and recent work has suggested that in addition
to the ventral visual stream specializing in static object
recognition, there is a lateral visual stream that processes
dynamic, social content. Here, we investigated the abil-
ity of 350+ modern image, video, and language models
to predict human ratings of visual-social content of short
video clips and neural responses to the same videos. We
find that unlike prior benchmarks, even the best image-
trained models do a poor job of explaining human behav-
ioral judgements and neural responses. Language mod-
els outperform vision models in predicting behavior but
are less effective at modeling neural responses. In early
and mid-level lateral visual regions, video-trained models
predicted neural responses far better than image-trained
models. However, prediction by all models was overall
lower in lateral than ventral visual regions of the brain,
particularly in the superior temporal sulcus. Together,
these results reveal a key gap in modern deep learning
models’ ability to match human responses to dynamic vi-
sual scenes.
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Introduction
Human cognition is remarkably attuned to social visual cues,
enabling us to quickly and automatically recognize and inter-
pret interactions and intentions of others (McMahon & Isik,
2023). Recent work has suggested that social visual scenes
are processed along the lateral surface of the brain originat-
ing in the early visual cortex (EVC) and extending to the su-
perior temporal sulcus (STS) (Wurm, Caramazza, & Lingnau,
2017; Pitcher & Ungerleider, 2021). Despite the importance
of dynamic, social perception, NeuroAI has focused almost
exclusively on the match between humans and AI in static
scenes (Allen et al., 2022; Kriegeskorte, 2015). To address
this gap, we employ large-scale benchmarking of over 350
image, language, and video models, including state-of-the art
(SOTA) models, to compare these models to human behavior
and fMRI responses to naturalistic social videos (Figure 1).

Methods
Behavioral and neural data
Behavioral judgements and neural data were previously pub-
lished in (McMahon, Bonner, & Isik, 2023) and are publicly
available. Briefly, the authors collected behavioral ratings of
the visual social scene on 250 3-second videos of dyadic
social actions and showed these same videos to fMRI par-
ticipants over many sessions, obtaining high-quality data for
model evaluation. The dataset includes eight behavioral rat-
ings collected on a likert scale (N ≥ 10 per rating per video):

Figure 1: Features from image, video, and language models
were extracted from either videos or captions and used to pre-
dict behavioral ratings and fMRI responses to the videos.

the spatial expanse of the scene (i.e., close up versus far away
scenes), the extent to which the video contained an object-
directed action, distance between people in the video, extent
to which two people are facing, whether people are engaged
in a joint action (like dancing or fighting), whether people are
communicating, valence, and arousal.

To evaluate the language models, we additionally had a
new group of 150 online participants annotate the actions and
interactions of the agents in the videos in a single sentence.
We collected at least five unique captions for each video. Cap-
tions were cleaned by removing participants whose captions
were determined to be 2.5 standard deviations away from the
mean of other raters in the embedding space of all-MiniLM-
L12-v1 implemented in Hugging Face (Wolf et al., 2020).

Model selection

We selected models with a broad range of architectures, train-
ing sets and objectives. We tested over 300 image mod-
els from collections including Torchvision and Pytorch-Image-
Models libraries, VISSL, OpenAI’s CLIP, and Dectectron2. We
selected eight video models. Notable video models included
Facebook’s SlowFast and TimeSformer models. Image and
video models were selected to represent a comprehensive
cross-section of high-level visual tasks, and include convolu-
tional and transformer architectures. Fifteen language models
were selected based on performance in natural language pro-
cessing tasks, focusing on sentence-transformers, including
variants from CLIP and GPT-2 architectures. We tested fewer
video and language models relative to image models due to
their availability and computational costs, respectively. How-
ever, this only strengthens our conclusions when either model
class outperforms image models.

Behavioral and neural alignment

For each model, we extracted the activations from every layer
of the model and used optimized leave-one-out Ridge regres-
sion and 4-fold cross validation in the training set as imple-
mented in (Conwell, Prince, Kay, Alvarez, & Konkle, 2023)
to find the best fitting model layer. We then evaluated the



best model layer on the test set. Performance was determined
as the correlation between the predicted behavioral ratings or
neural activation and true data.

To provide image models with information from across the
video, each model received 7 evenly sampled frames from the
video, which were then averaged in the model’s feature space.
Preliminary analyses showed very similar results when frames
were concatenated. Similarly, activations were extracted for
every caption from the language models and then averaged.

Results

Behavioral prediction

All models perform similarly well, near the level of human re-
liability, for spatial expanse, which is a static scene feature.
For all other social action features, traditional image-trained
models perform well below the level of human agreement (Fig-
ure 2). On average for most features, video models provide a
slight performance boost over image models, and language
models are more predictive than image and video models,
particularly for the higher-level social features. Interestingly,
the larger models with more training (e.g., GPT2, X3D, CLIP)
did not always provide the best match to behavior.

Figure 2: Performance of each model (dots) at predicting
the human judgments of different visual-social features of the
videos. The solid colored lines represent the mean of each
class of models. The gray bars are the split-half reliability of
ratings across participants. Select models are noted.

Neural prediction

We examined voxelwise neural responses averaged in several
regions of interest (ROIs) in the lateral visual stream (EVC,
middle temporal area, MT, extrastriate body area, EBA, lateral
occipital cortex, LOC, and social-interaction selective regions
in posterior STS, pSTS, and anterior STS, aSTS) and also in-
cluded two ventral ROIs for comparison (fusiform face area,
FFA, and parahippocampal place area, PPA). On average,
video models outperform image and language models in all
ROIs in the lateral stream. In particular, video models provide
a large performance boost over image models in early and
mid-level lateral visual regions such as MT and EBA. How-
ever, in more anterior regions along the STS, all models have
lower predictive power, in contrast to ventral regions where

image and video models are at or near the level of the noise
ceiling (Figure 3). Similar trends can be seen in a whole brain
analysis (Figure 4).

Figure 3: Performance of models at predicting neural re-
sponses in lateral (left) and ventral (right) ROIs averaged
across participants. Gray bars are the trial-wise split-half reli-
ability averaged across participants. Select models are noted.

Figure 4: The difference in performance between the best
performing video and image model (left) and language model
(right) in one representative subject.

Discussion

The results provide a comprehensive assessment of image,
video, and language models, including SOTA models, in
matching human responses to dynamic social perception. De-
spite their strong match to other areas of human visual behav-
ior and brain responses (Geirhos et al., 2021; Conwell et al.,
2023), the performance of image-trained models was quite
poor in predicting human judgments of various visual-social
features of short video clips and brain responses along the
lateral stream. Language models and video models were bet-
ter at predicting behavior and brain responses, respectively,
perhaps because both can better capture rich event struc-
ture that image models cannot. However, no model could ac-
curately match human responses across brain and behavior.
Together, these results reveal a substantial gap in current AI
models’ ability to match human visual behavior to dynamic so-
cial scenes as has been recently identified for naturalistic face
perception (Jiahui et al., 2023), and highlight the importance
of studying vision dynamic, social contexts.
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