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Abstract
Learning structures that effectively abstract decision
policies is key to the flexibility of human intelligence. Pre-
vious work has shown that humans use hierarchically
structured policies to efficiently navigate complex and
dynamic environments. However, the computational pro-
cesses that support the learning and construction of such
policies remain insufficiently understood. To address
this question, we tested 1,052 human participants on a
decision-making task where they could learn, transfer,
and recompose multiple sets of hierarchical policies. We
propose a novel algorithmic account for the learning pro-
cesses underlying observed human behavior. We show
that humans use meta-learning and Bayesian inference to
expand compressed policies into hierarchical representa-
tions over learning. Furthermore, our modeling suggests
that these hierarchical policies are structured in a tempo-
rally backward-looking or retrospective fashion.

Keywords: computational cognitive modeling; abstraction; hi-
erarchy; meta-learning; decision-making; transfer; composition

Introduction
The ability of humans to learn, abstract, transfer, and com-
pose complex decision policies between structurally related
contexts is crucial to efficient and flexible generalization – a
hallmark of human intelligence. Previous work has shown that
humans can abstract states and actions hierarchically to effec-
tively navigate complex and dynamic environments (Botvinick,
Niv, & Barto, 2009; Xia & Collins, 2021), though existing
frameworks fail to provide an account for how such hierarchi-
cal structures are learned, constructed, and organized at the
algorithmic level. Here, we propose two algorithmic architec-
tures, supported by data, that can capture human behavior
on a decision-making task where participants can learn and
transfer multiple sets of hierarchical policies.

Methods and results
1,052 undergraduate students completed the online behav-
ioral experiment illustrated in Figure 1, which extends the
paradigm used by Li, Xia, Dong, and Collins (2022). Par-
ticipants who learned to perform better than chance in both
stages during the training phase were included in the reported
analyses (n=591). All model equations match or extend Xia
and Collins (2021) unless otherwise noted.

Choice accuracy gradually increased and plateaued across
training blocks (Figure 2). This slow learning was driven by a
decrease in compression error, which implies the use of com-
pressed policies that assume independence between both
stages. We hypothesized that this behavior resulted from
meta-learning of the hierarchical structures and tested it by
fitting two models to human data: one with meta-learning and
one fully hierarchical. The meta-learning of hierarchy is mod-
eled as a mixture policy. On trial t, the meta-policy πM is com-
puted by

πM(t) = Pt(πC) ·πC(t)+Pt(πH) ·πH(t)
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Figure 1: The task paradigm. Participants learned to unlock
two nested chests (gold/silver in stage 1 followed by red/blue
in stage 2) by finding the correct keys through trial-and-error
via deterministic feedback. The hierarchically structured state-
action mappings (context) changed every block: the correct
key to the inner chest depended on the outer chest’s color
and the block context. Participants could only proceed to the
next stage (pseudo-randomly determined) after they selected
the correct key. During training, the block context alternated
between two hierarchical structures (left). In test blocks, it
switched to either V1 or V2 (right), which are partially simi-
lar to the first training structure (top left). The first two blocks
included 60 trials and each following block included 32 trials.

where Pt(π) denotes the probability of sampling some policy
specified by the subscript (C for compressed and H for hi-
erarchical). These probabilities are learned using Bayesian
updates with a small, non-zero prior for the hierarchical pol-
icy, and the likelihood computed by marginalizing over the
probabilities of sampling all compressed and hierarchical poli-
cies. Meta-learning substantially improved the model’s ability
to capture accuracy and compression error trends in human
behavior.

As expected, participants who learned repeating test ver-
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Figure 2: Compressed policies expand into hierarchical poli-
cies over learning. Using a separate policy for each stage
would lead to compression error (e.g., choosing K5 instead of
K8 for a red chest following a gold chest in the first training
context). The rate of compression error decreases over train-
ing in humans, which is captured by the meta-learning model
but not the fully hierarchical model.

sions (V1-V1 and V2-V2) improved between test blocks (not
reported here), indicating transfer of newly learned policies,
which replicates Li et al. (2022). Surprisingly, participants who
learned non-repeating test versions (V1-V2 and V2-V1) also
improved between test blocks (Figure 3 bottom; one-tailed
paired t-test p=3.84× 10−5 for V1-V2 and p=1.03× 10−2 for
V2-V1). This improvement could not be explained by meta-
learning only. We hypothesized that the structural similarity
between V1 and V2 encouraged transfer and composition,
since this effect was not observed in a control experiment
where V1 was paired with a less structurally similar test block
(not reported here). We compared two models with different
hierarchical structures: our previous, options-inspired tempo-
rally forward model (Xia & Collins, 2021) that uses stage 1
(gold/silver) to contextualize the medium-level policies and a
new temporally backward model that uses stage 2 (red/blue)
as a context instead (Figure 3 top). The temporally backward
model fitted human behavior better (one-tailed paired t-test on
likelihood p=5.56×10−3 for V1-V2 and p=7.09×10−2 for V2-
V1): it captured the transfer between V1 and V2, which the
temporally forward model failed to (Figure 3 bottom).

Discussion

Our findings highlight processes at multiple timescales that
support the acquisition of hierarchical policies in a com-
plex, dynamic learning environment. Hierarchical policies
are slowly constructed in a bottom-up fashion: simpler, com-
pressed policies serve to bootstrap complex, hierarchical poli-
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Figure 3: The learned hierarchical policies follow a tempo-
rally backward structure. A temporally forward structure im-
plies prospective hierarchical construction (contextualized by
stage 1 stimulus), while a temporally backward hierarchy is
retrospective (contextualized by stage 2 stimulus). Partici-
pants who learned non-repeating test hierarchies (V1-V2 or
V2-V1) showed improved performance between the two test
blocks, as measured by the normalized average number of
presses until finding the correct key in stage 2. This effect is
captured by the temporally backward model but not the tem-
porally forward model, since the former can compose learned
structures between V1 and V2 while the latter cannot.

cies, which emerge through meta-learning. Furthermore, con-
trary to our expectations based on previous work (Botvinick et
al., 2009; Xia & Collins, 2021), the structures learned by hu-
mans to represent hierarchical policies appear to be tempo-
rally “backward” rather than “forward”: the immediate informa-
tion before decision-making (stage 2 stimulus) contextualizes
a policy over earlier information (stage 1 stimulus), which is
held in memory. This structural organization is a departure
from the standard options framework in hierarchical reinforce-
ment learning, which holds the opposite (temporally forward)
representation structure (Botvinick et al., 2009; Sutton, Pre-
cup, & Singh, 1999). Although both types of structures can
be flexibly transferred and composed to facilitate new learn-
ing, a temporally backward one may be more resource ra-
tional, since it allows hierarchy to emerge without the effort-
ful process of re-contextualizing compressed policies. Future
research should explore the implications of our findings for
human-inspired artificial intelligence and machine learning.
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