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Abstract
In perceptual decision-making, possible actions are of-
ten available before or after sensory evidence for what to
do is known. We investigated how neural circuits flexibly
combine these pieces of information by both recording
from the prefrontal cortex of a monkey and analyzing a
recurrent neural network (RNN) performing the same two
decision-making tasks. In both tasks, the goal was the
same: discriminate the predominant color of a red-green
checkerboard and touch the corresponding target. In one
task, targets appeared before the checkerboard and in the
other task, the order was reversed with a working mem-
ory delay. We examined the same neurons and RNN units
in both tasks allowing us to jointly examine them.

The RNN predicted the following representational ge-
ometry: sensory evidence and possible actions are repre-
sented orthogonally whereas the final action choice out-
put emerges as a combination of these two factors. We
uncovered similar dynamical structures in the brain: af-
ter appearance of the first stim./targ., sensory evidence
and targ. config. were encoded within orthogonal sub-
spaces of activity. After the onset of the second stimulus,
activity evolved into an aligned action choice plane. To
understand how such orthogonal task variable represen-
tations might be produced, we analyzed the selectivty of
these neurons. Preliminary analysis suggests neurons
segregate into populations with selectivity for target con-
figuration or sensory evidence for the first stimulus, but
not both. Conversely, subspace alignment is the result of
the many action-selective neurons integrating both sig-
nals and leading to choice.

Decision-making often requires separate encoding of evi-
dence and possible actions. For instance, when navigating
in the real world, we may be presented with several routes
to a destination, each with different costs that we must weigh
to make an optimal decision. While recent work has shown
that stimulus evidence is encoded separately from possible
choices and chosen action in lateral prefrontal cortex (LPFC)
(Charlton & Goris, 2022; Tafazoli et al., 2024), the exact dy-
namical and single cellular mechanisms behind how these dif-
ferent task variables are encoded and how that is transformed
into action is unknown. We first generated a hypothesized
dynamical mechanism by training a low-rank recurrent neural
network (LR-RNN; Valente, Pillow, and Ostojic (2022)). Sec-
ond, we show that the dynamics in vivo in the dorsolateral
prefrontal cortex (DLPFC) of a macaque performing the same
two tasks was consistent with the representation predicted by
the RNN. Lastly, we explore how single unit selectivity might
produce the dynamics seen at the population level.

RNN’s provide a hypothesized dynamical
mechanism of decision-making

We first investigated how units in a LR-RNN represent task
variables, across two tasks in which the order of stimulus

Figure 1: The two tasks: Targets First (TF; A) and Checker-
board First with Delay (CFD; B).

(stim.) and targets (targ.) are switched. In the Targets First
(TF) task, red and green targ. appear with random configu-
ration and then a checkerboard stim. appears with variable
numbers of red and green squares (Fig. 1A). In the Check.
First with Delay (CFD) task, the order is reversed and stim. is
followed by a delay where the stim. disappears (Fig. 1B).

The RNN was given separate targ. config. and stim. sig-
nals and rank-4 constrained (Fig. 2A). Principal components
analysis suggested the following representation: after stim. or
targ. onset (yellow dot, Fig. 2B, top), activity spread in or-
thogonal directions encoding either stim. color (in CFD) or
targ. config. (in TF Fig. 2B, bot.). After the onset of the
second signal (purple dots, Fig. 2C, top), activity was again
pushed along stim. color/targ. config. directions until each tra-
jectory arrived at one of four locations encoding stimulus color
plus reach direction demarcated by a star (Fig. 2C, bot.).

Figure 2: (A) A rank-4 LR-RNN is trained on both TF and CFD. (B,
top) Trial-averaged RNN unit activities are projected onto the top-
3 PC’s, sorted according to trial outcome, and aligned to the first
epoch. (B, bottom) These population activities are projected onto
the PC1-PC2 plane. (C) Same as (B) but now aligned to the second
trial epoch. Stars indicate end points of the trial.

Neurons in DLPFC recapitulate dynamical
predictions from RNN’s

To test the dynamical mechanism predicted by the RNN, we
recorded from macaque DLPFC with Neuropixels probes (n=6
sessions). We used a conservative approach to select 329
well-isolated single units. We then aligned to the first or sec-
ond epoch and examined the trial-averaged firing rate of each
neuron for all trial outcomes (red left target choice, green left,
red right, and green right). A neuron was target configuration
selective (targ. selective) if it significantly differentiated (p <
0.001) the two target configurations; a neuron was stimulus
evidence selective (stim. selective) if it significantly differen-
tiated checkerboards with different predominant colors; and



finally a neuron was said to be action choice selective if it dif-
ferentiated the direction (left vs. right) that the animal reached.

Figure 3: (A) Aligned to the first epoch (yellow dot), neural ac-
tivity evolved over time in the space of first three principal com-
ponents. (B) The subspace “alignment index” for TF activity in
the top-10 CFD PC’s and vice versa over the same time period
as A. (C) Neural activity aligned to the second epoch onset
evolves toward four discrete positions in state space grouped
by chosen color plus reach direction (colored stars). (D) The
degree of subspace alignment increased during the second
epoch until just before minimum reach reaction times.

We found that neural activity followed the hypothesized dy-
namics posited by the RNN. After the onset of the first epoch,
neural activity spread along two orthogonal directions encod-
ing either stim. evidence or targ. config. (compare Fig. 3A
to Fig. 2B, bot.). Consistent with this visualization, we found
that the subspaces encoding each task variable during this
time were highly non-overlapping (Fig. 3B). We evaluated this
via an “alignment index” (Elsayed, Lara, Kaufman, Church-
land, & Cunningham, 2016) between the tasks calculated by
projecting the activity of one task into the top-10 PC’s during
the other and calculating cross-variance explained. In con-
trast, during the second epoch, activity evolved over time until
they grouped by chosen color plus reach direction at four dis-
crete positions in state space (colored stars, Fig. 3C) similar
to the grouping seen in Fig. 2C, bot. Over this second epoch,
subspaces started initially misaligned but gradually aligned
contemporaneous with alignment of neural activity by chosen
color and action (Fig. 3D). This alignment leveled-off just be-
fore the minimum reaction time. After the minimum reaction
times, activity can be divided into left/right reaches and this
difference increases over time (dashed gray line in Fig. 3C).

Single neurons fall into separate populations
encoding stim. or targ. but rarely both

In order to explore potential single neuron mechanisms that
produce orthogonal representation of task variables, we ex-

amined the single unit selectivity for stim., targ. config., and
action choice. During the first epoch, neurons exhibited strong
encoding of stim. color and targ. config. during the appear-
ance of the checkerboard or targets respectively (Fig. 4A).
We assessed the strength of encoding for either stim. color or
targ. config. (or both), using a linear regression This regres-
sion was applied in 100-ms time bins with the maximum R2

over all trial bins shown in Fig. 4B. Only assessing units that
significantly (p < 0.001) encoded a task variable in the first
epoch, we found that most neurons significantly encoded ei-
ther stim. color (blue markers) or targ. config. (orange mark-
ers) but rarely both (green markers). These results are pre-
liminary evidence that the subspace orthogonalization found
at the population level was due to a functional segregation of
neurons in terms of task variable selectivity.

Figure 4: (A) Two exemplar DLPFC neurons with peri-stimulus
time histogram in the first epoch of CFD (left) and TF (right).
(B) R2 of linear regression on single unit firing rate differences
for targ. config. (x-axis) and stim. (y-axis). (C) Two exem-
plar DLPFC neurons with peri-stimulus time histogram in the
second epoch of CFD (left) and TF (right). (D) R2 of linear re-
gression on single unit firing rate differences for action choice
in TF (x-axis) and action choice in CFD (y-axis).

However, this previous result does not explain how the ac-
tivity subspaces progressively align in the second epoch as
neural trajectories converge. We next investigated if action
choice selective neurons (Fig. 4C) were behind this conver-
gence. Adopting the same regression analysis as before, we
found that action choice selective neurons were highly con-
served between tasks (Fig. 4D). This implies that, once both
stimulus and targets are available, action choice selective
neurons become active and dynamics unify to jointly signal
color choice and reach direction and eventually action choice.

Conclusion: We used a novel dual task paradigm to isolate
how sensory evience and possible actions are encoded. We
used a RNN model to propose a mechanism and validated
it in-vivo. Our main finding was that abstract task variables
are encoded in orthogonal subspaces and this is likely due
to by segregated single neuron selectivity. This orthogonality
gave way to subspace alignment when both pieces of informa-
tion were available. Our results suggest a dynamical mecha-
nism behind how PFC is able to encode and combined diverse
types of information and use it to guide action choice.
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