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Abstract: 
A typical view of the world contains diverse objects and 
people, evoking distributed patterns of activity across 
visual cortex. How do different functional subregions 
work together in parallel to process a complex natural 
scene? Here we introduce brain-guided feature 
accentuation, which can be applied to encoding models 
to highlight the specific image content responsible for 
driving different groups of fMRI voxels. As a proof of 
concept, we first show that we can attribute the 
activation of face-selective voxels to human faces, and 
of scene-selective voxels to the surrounding scene 
context, all within the same image. Next, we show that 
these accentuated stimuli can raise (and lower) model-
predicted activation levels in category-selective regions 
of a held-out test subject. Finally, we show that feature 
accentuation may provide a means to decompose how 
different scene-selective regions (PPA, RSC) contribute 
to the representation of individual images. These 
approaches may eventually help interpret subsets of 
visual cortex with less-well-understood tuning, and 
could provide a new method to non-invasively exert 
control over population activity in human fMRI. 

Introduction 
A longstanding approach to studying visual 

representation has involved identifying the group of 
stimuli that elicit high activation in a particular subset of 
cortex (Kanwisher, 2010). While such paradigms have 
been highly productive, they cannot directly speak to 
the question of how an individual view of a complex 
scene is processed. In addition, some swaths of high-
level visual cortex have tuning preferences that remain 
poorly understood. Here, we introduce brain-guided 
feature accentuation, a new method aimed at dissecting 
how different subregions of visual cortex operate jointly 
to process a given input.  

Feature accentuation is an efficient computer vision 
interpretability method describing what and where in an 
image contributes to a given feature’s response 
(Hamblin et al., 2024). Given the inputs of a seed image 
and a feature vector specified within a deep neural 
network (DNN) layer, gradient-based procedures 
update the seed image to: (a) increase the value of the 
target feature; and (b) regularize the updates by 
keeping the accentuated image  similar to the seed 
image, in the latent space of an earlier layer. The 
accentuation thus emphasizes the location of the target 
feature with minimal distortion of the original image. 
Suppressing the target feature can be also achieved by 
flipping the sign of the feature loss. Here, we propose 
that this technique can be applied in a fruitful way to 
DNN encoding models of category-selective regions 
within the Natural Scenes Dataset (NSD; Allen et al., 
2022). Our initial analyses suggest that image 
accentuations can be used in future fMRI studies to test 
how different image components underlie observed 
fMRI patterns. 

Results 
Our NSD encoding models were derived from layer 

relu7 of an AlexNet model trained on ImageNet using 
the self-supervised Barlow Twins objective. The DNN 
backbone was fixed for all analyses. We established the 
mean encoding axes of face-selective region FFA, and 
scene-selective regions PPA and RSC, by fitting a set 
of sparse positive-weighted linear regression models 
(Prince et al., 2024) using 500 subject-specific training 
images from NSD, separately for subj01 and subj02. 
These “encoding axes” (the 4096-dim vectors of relu7 
regression weights, averaged over voxels) served as 
the target features input to the accentuation pipeline. 

We first accentuated a single NSD stimulus toward 
the encoding axes of FFA and PPA in NSD subj01. We 
chose a test image that contained several humans and 
various objects situated within an indoor scene, and 
which activated both FFA and PPA to a moderate 
degree in subj01. Then, we accentuated the image to 
drive higher predicted activity along the encoding axis 
of FFA. We observed that the content of the faces in the 
synthesized image became highly exaggerated, and 
that there was minimal impact on the background 
context. Strikingly, when instead accentuating along the 
encoding axis of PPA, we observed that the humans 
had been effaced from the image, with further emphasis 
of rectilinear content such as walls (Fig 1). Accentuating 
toward the encoding axes of different category-
selective ROIs thus had intuitive consequences.   

We next measured whether images accentuated 
toward one subject’s encoding axes could also drive (or 
suppress) predicted activity in the encoding model of a 
separate subject (Tuckute et al., 2024). Examining a 
diverse set of 50 subject-overlapping NSD test images, 
we performed separate “drive” and “suppress” 
accentuations for each image toward subj01’s FFA and 
PPA encoding axes. Then, we measured the predicted 
activity of these raw and accentuated stimuli in the 
encoding models of a validation subject (subj02). For 
the “drive” accentuations, we observed consistent 



increases in predicted activation for the validation 
subject, and for the “suppress” condition, we observed 
consistent decreases (Fig 2). Thus, similar features 
were underlying both subjects’ encoding axes. 

Finally, we attempted to synthesize stimuli that 
would drive one scene-selective region’s encoding axis 
(PPA) while simultaneously suppressing that of a 
different scene-selective region (RSC). These areas 
are hypothesized to perform distinct functions within the 
scene processing system, but they have highly similar 
encoding axes (r = 0.92 for subj01, r = 0.82 for subj02). 
To test whether we could isolate the features that were 
uniquely represented by PPA, we accentuated the test 
stimuli toward the difference in vector space between 
the PPA and RSC axes. On average, we observed that 

the new stimuli drove higher predicted activity within 
subj02’s PPA encoding model, and lower predicted 
activity in subj02’s RSC encoding model (Fig 3), though 
the effect size was relatively small. Feature 
accentuation may thus help decompose how voxels 
with similar selectivity differentially contribute to the 
representation of individual images.  

Discussion 
We have demonstrated that accentuating images 

toward ROI encoding axes can provide both qualitative 
insight into the nature of visual population codes, and 
perhaps, a quantitative means to control their activity 
levels. Our work joins a growing literature aimed at 
probing human visual representations using brain-
guided image synthesis (Gu et al., 2022; Luo et al, 
2024), and related work applying network “dissection” 
to deep encoding models (Khosla and Wehbe, 2022; 
Sarch et al., 2023).  

A critical next step is to validate this paradigm by 
presenting raw and accentuated stimuli to the same 
fMRI subjects. The results here are a proof of concept: 
since there is a correlation between different subjects’ 
FFA encoding axes, it is relatively unsurprising that 
images accentuated for one subject would predict high 
activity in another. The images themselves amount to a 
strong hypothesis–that the highlighted features should 
activate the target region when scanned. Validating this 
prediction would mark significant progress in describing 
the relevant features, while failure would strongly refute 
the DNN encoding setup and highlight the need for 
better models. Overall, these approaches may help 
provide refined models of how complex visual inputs are 
processed. 
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