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Abstract: 

To process information from the external world, the brain 
relies on a hierarchy of processing systems, which 
initiate in early sensory neocortical areas and converge 
on the hippocampus. Components of this hierarchy 
exhibit markedly different computational properties, with 
the hippocampus supporting faster plasticity and 
employing sparser representations. There has been 
extensive work on the properties of these systems, but it 
remains unclear how and why these systems emerged in 
the first place. We explore the emergence of a hierarchy 
of processing systems in artificial neural networks using 
a meta-learning approach. As networks optimize for a set 
of tasks, they concurrently meta-learn hyperparameters 
that modulate layer-wise learning rates and sparsity. We 
find that this meta-learning promotes superior 
performance, at overall higher sparsity levels. We 
demonstrate that key aspects of complementary learning 
systems emerge in the networks, with a brain-like 
differentiation of sparsity and learning rates across 
layers. Furthermore, when endowed with two pathways 
and trained on a task with opposing demands of 
individual item recognition and categorization, the 
models capture divergent properties between intra-
hippocampal pathways. Together, these results suggest 
that the organization of heterogenous learning systems 
in the brain may arise from optimizing biological 
variables that govern learning rate and sparsity.  
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Introduction 

   A hierarchy of sensory processing flows from 
neocortical areas of the brain to the hippocampus 
Felleman & Van Essen 1991). The hippocampus and 
neocortex have been posited to perform 
complementary computations for learning and memory: 
the hippocampus rapidly forms sparse, pattern-
separated representations of individual experiences, 
while the neocortex slowly forms overlapping, 
distributed representations across experiences on a 
more extended timescale (McClelland et al., 1995). A 
wide range of empirical observations support these 
ideas (O'Reilly & Norman 2002). One possibility is that 
the hippocampus and neocortex are components of 
broader hierarchy of plasticity and sparsity (McClelland 
et al., 1995; Kent et al., 2016).  

   There has been extensive theoretical work that seeks 
to capture the properties of the two systems in 

computational models (e.g., Sun et al., 2023; Spens & 
Burgess 2024), which has involved manually setting up 
two components with different sets of assumptions; in 
other words, directly building the distinctions of the two 
systems into the models. These theories thus do not 
provide an account of how and why the brain arrived at 
its organization of distinct subsystems in the first place. 

   Here, we explore the emergence of a hierarchy of 
subsystems in artificial neural networks (ANNs). We 
take a meta-learning approach that builds on prior work 
(Gupta et al., 2020). In this approach, as ANNs optimize 
weights for tasks, they concurrently meta-learn 
hyperparameters that modulate sparsity, through a 
within-layer competition mechanism, and layer-specific 
learning rates. We observe that this approach 1) 
enhances computational efficiency, 2) gives rise to a 
brain-like hierarchical differentiation of sparsity and 
learning rates, and 3) enables a two-pathway model to 
develop divergent properties that mirror differences 
between intra-hippocampal pathways. Together, these 
results suggest that the organization of complementary 
learning systems in the brain may arise from meta-
learning biological variables that modulate activity and 
plasticity. 

Results 

   In this meta-learning approach (Gupta et al., 2020), 
as ANNs learn a series of tasks, they jointly optimize 
hyperparameters and weights through a two-level 
optimization process (Fig. 1). In the inner loop, the 
networks obtain a set of temporary “fast” weights by 
updating weights based on a batch of current task data. 
The outer loop then computes a meta loss by evaluating 
fast weights on a mixture of current and prior data, 
computes a gradient based on this loss, and uses that 
gradient to update initial weights (weights before inner 
loop updates) and hyperparameters through meta 
update. Our models adapt two sets of layer-wise 
hyperparameters. The first set consists of layer-specific 
learning rates. The second set modulates layer-wise 
sparsity through a within-layer competition mechanism 
(Bricken et al., 2023): during inference, the activity of 
the kth most active unit in each layer is multiplied by a 
layer-specific hyperparameter before being subtracted 
from the activity of all units in that layer.  



 

 
Figure 1. Meta-learning approach and facilitation of computational 
efficiency. (a) Schematic illustration of the two-level optimization process 
in the meta-learning approach. Ω	 denotes per-layer learning rates. 
β	 represents parameters that modulate within-layer competition. Light 
blue, orange, and dark blue boxes respectively denote weights before 
inner update, fast weights obtained through inner update, and weights 
after meta update.  (b) The model learns a sequence of 20 rotated MNIST 
tasks, each of which rotates the standard MNIST digit dataset by a certain 
degree. (c) We first measure task performance and sparsity in feedforward 
networks with two hidden layers. Each hidden layer has 250 units, uses 
the ReLU activation function, and includes no bias term. Other simulations 
in this work employ the same specifications for the models but use varying 
numbers of layers. Relative to baseline models with matched initialization 
of weights and hyperparameters, models that concurrently meta-learn 
hyperparameters through the tasks achieve superior performance. (d) 
Compared to matched baseline models, models that meta-learn 
hyperparameters employ lower proportions of active units (i.e., sparser 
representations) to represent task inputs. Error bars represent +/-1 SEM 
across networks initialized with 40 random seeds. 

   We observed that meta-learning hyperparameters 
facilitates computational efficiency of feedforward 
neural networks: Compared to models that do not adapt 
hyperparameters, models that meta-learn 
hyperparameters achieved superior performance (Fig. 
1c) while activating fewer hidden units (Fig. 1d). Unlike 
approaches that explicitly optimize for sparsity (Hoefler 
et al., 2021), this approach promotes sparse 
representations without directly optimizing for an 
energy cost or sparsity objective. 

 
Figure 2. A brain-like hierarchical differentiation of sparsity and 
learning rates emerges through meta-learning. (a) In feedforward 
networks with 4 hidden layers that meta-learn hyperparameters, deeper 
layers, and especially the top hidden layer (h4), learn to employ sparser 
representations (left). This hierarchical differentiation of sparsity is absent 
in baseline models that do not meta-learn hyperparameters (right). (b). In 
models that learn hyperparameters, the top layer develops much higher 
learning rates than earlier layers. We note that both patterns are present 
in networks with two hidden layers that meta-learn hyperparameters. 

   Second, through this approach, a brain-like 
hierarchical differentiation of hidden layers emerged 
(Fig. 2): ANNs learned to update their incoming 
connections more rapidly and formed sparser task 
representations (i.e., activating a lower proportion of 
hidden units) in higher than in lower hidden layers. The 
emergent graded structure of these networks 
resembles the hierarchical organization of processing 
systems in the brain, with the especially sparse and 

fast-learning hippocampus at the apex (McClelland et 
al., 1995; O'Reilly & Norman 2002). Both patterns are 
absent in the baseline models.  

 

 
Figure 3. The emergence of divergent properties in a model with 
parallel pathways and dual tasks. (a) The network learns a series of 
dual tasks. For each dual task, the model learns to map each image to its 
category output (i.e., 0-9) as well as an item-specific label. (b) We meta-
trained a model with parallel pathways of different sizes at the top of a 
hierarchy. h4_L (four times the size of h4_R) and h4_R (has 250 units as 
its preceding layers) receive input from h3. (c) Consistent with our 
previous results, the model shows a hierarchical differentiation of sparsity. 
In addition, the larger h4_L pathway develops sparser task 
representations. (d) The larger h4_L pathway develops higher learning 
rates than h4_R. (e) Performance on the item task relies on the fast-
learning, sparse h4_L, such that lesioning h4_L dramatically impairs the 
item task performance. The divergent properties of the two pathways in 
the meta-learned model and the reliance on the larger pathway for item 
discrimination mirror differences between the two main intra-hippocampal 
pathways. 

   Finally, we meta-trained a model with parallel 
pathways of different sizes at the top of a hierarchy, 
representing the two main pathways (the monosynaptic 
and trisynaptic pathways) within the hippocampus (Fig. 
3). The larger trisynaptic pathway forms sparser task 
representations, learns more quickly, and is essential 
for distinguishing exemplars (Schapiro et al., 2017; 
Baker et al., 2016). We trained the model on a dual task 
that imposes the opposing demands of categorization 
and distinguishing exemplars. The two pathways 
developed divergent properties consistent with 
differences between intra-hippocampal pathways, 
including higher learning rates and sparser task 
representations in the larger pathway, and a reliance on 
the larger pathway for distinguishing exemplars (Fig. 3).  
   Together, our results suggest that the organization of 
graded subsystems in the brain may arise from meta-
learning biological variables that modulate sparsity and 
speed of learning. This process could potentially 
correspond to evolutionary, developmental, and/or 
concurrent optimization processes that govern online 
learning. The meta-learning approach provides a 
promising framework for understanding the 
organization of subsystems in the brain.   
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