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Abstract
This study explores the application of diffusion models
and reinforcement learning to model Decoded Neurofeed-
back (DecNef), as applied via functional magnetic reso-
nance imaging (fMRI). Our methodology, Denoising Dif-
fusion Policy Optimization (DDPO), integrates diffusion
models trained via reinforcement learning to navigate the
complex dynamics of brain activity changes. Using a pre-
existing DecNef dataset, we implemented policy gradient
methods to iteratively refine the diffusion models, aiming
to produce target patterns of neural (voxel) activity. Our
results demonstrate the potential of this approach for ac-
curately modeling policies that allow the achievement of
target brain states, offering a foundation for investigating
the mechanisms of neurofeedback and its implications
for basic science research and conducting more effective
neurofeedback experiments.
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Introduction
Decoded neurofeedback (DecNef) is an innovative neurofeed-
back method that uses functional magnetic resonance imag-
ing (fMRI) and pre-trained classifiers to non-invasively in-
duce specific neural activity patterns (LaConte, 2011; Shibata,
Watanabe, Sasaki, & Kawato, 2011). This technique enables
unconscious control of neural activities, linking them to be-
havioral outcomes. Widely applied across various behaviors,
DecNef demonstrates versatility and significant potential in
both fundamental and clinical neuroscience research (Chiba
et al., 2019; Li et al., 2021; Oblak, Lewis-Peacock, & Sulzer,
2021).

Despite its successes, however, DecNef can also exhibit
inconsistent effectiveness. Several recent lines of research
have begun to systematically investigate potential sources of
this variability, focusing on neuro-cognitive and psycholog-
ical mechanisms (Taschereau-Dumouchel, Cortese, Lau, &
Kawato, 2021). For instance, (Shibata et al., 2011) intro-
duced a “targeted neural plasticity model”, suggesting DecNef
induces specific behavioral changes through neuronal plas-
ticity via reinforcement learning (RL), evidenced by increas-
ingly similar brain activity patterns to targets during training,
as shown in fMRI studies (Emmert et al., 2016; Shibata et
al., 2011). This proposal is consistent with other neurofeed-
back research, which also links effective training to RL pro-
cesses (Cortese et al., 2021). Additionally, (Lubianiker, Paret,
Dayan, & Hendler, 2022) framed neurofeedback within a RL

paradigm, offering a structured way to understand how train-
ing protocols could align with reinforcement learning compo-
nents, helping participants modulate brain dynamics to reach
desired outcomes.

Inspired by these, our ultimate goal is to establish a foun-
dation for future work linking policies discovered through RL
frameworks to specific neural activity patterns and mecha-
nisms. As a first step, here we used RL to train diffusion
models to examine the dynamics and policies that might be
learned by the brain (or a human subject volitionally control-
ling their brain state) in order to achieve a target pattern of
neural (voxel) activity in DecNef.

Methods
We used existing data from one study published as part of the
“DecNef collection” (Cortese et al., 2021) to examine whether
a diffusion model trained through RL could successfully dis-
cover the policies required to transform a current brain state
into a target brain state within a given region of interest (ROI),
as required in DecNef studies. In this previously published
study, 24 human subjects were tasked with producing a tar-
get pattern of voxel activity in the target ROI (cingulate cor-
tex). This target pattern was defined in this study as the pat-
tern associated with facial preferences, as identified through
training an iterative sparse logistic regression. Data were pre-
processed according to standard procedures (motion correc-
tion, slice timing correction, etc.) and voxel patterns of activ-
ity were extracted from the target ROI according to methods
reported previously (Shibata, Watanabe, Kawato, & Sasaki,
2016). Each participant’s data thus consisted of ROI voxel ac-
tivity patterns across ∼ 720 volumes, and a target voxel pat-
tern of activity in this ROI that had resulted from training the
logistic regression classifier.

We assume the changes the subjects (volitionally) cause
to the ROI can be mapped to the denoising steps of a dif-
fusion model. In this approach, the denoising sequence is
formulated as a Markov Decision Process (MDP), where each
state represents a step in the denoising process, actions cor-
respond to the application of denoising steps, and the reward
function is tailored to the specific objectives of the diffusion
process; in our case, this objective is the same as the de-
coder used during the real DecNef experiments for each of
the subjects. This method is called Denoising Diffusion Policy
Optimization (DDPO) (Black, Janner, Du, Kostrikov, & Levine,
2023), a RL approach that employs policy gradient methods
to directly optimize diffusion models with respect to the reward
function (Figure1A).



To operationalize DDPO, we utilize a policy gradient algo-
rithm that iteratively updates the diffusion model parameters.
This algorithm optimizes the expected reward, which is calcu-
lated over multiple trajectories of the denoising process. The
use of a policy gradient approach is particularly advantageous
for this setting as it enables the integration of both immediate
and cumulative rewards, thus allowing for the refinement of
the model to produce outputs that align closely with the pre-
defined classifer.
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Figure 1: Model: A. Denoising Diffusion Policy Optimization
(DDPO) uses reinforcement learning to align ROI pattern ad-
justments with denoising steps in a diffusion model. It frames
denoising as states in a Markov Decision Process, optimizing
rewards based on experiment objectives through a policy gra-
dient algorithm to enhance model alignment with target clas-
sifiers. B. During the initial phase, our model was trained and
evaluated on a simulated 32×32 pattern dataset, utilizing Sum
of Squared Error (SSE) as the objective function. The model
demonstrated progressive improvement in cumulative reward
across successive training epochs.

In the DDPO framework, the MDP is formalized to inte-
grate the multi-step denoising process of diffusion models.
The MDP formulation is crucial for applying RL techniques to
optimize the denoising process in alignment with predefined
objectives. Formally, the MDP is described by first defining
st ≡ (c, t,xt) as the state at time t, with c representing the
context and xt the data state at t. The action at ≡ xt−1 signi-
fies the denoising step from xt to xt−1. The transition probabil-
ity P(st+1 | st ,at) ≡ δ(c, t −1,xt−1) describes a deterministic
shift to the next state based on the denoising process. The
reward function R(st ,at) ≡ provides r(x0,c) if t = 0 and zero
otherwise, focusing on the quality of the initial state x0 in the
context c.

We apply these equations and learning rules in simple net-
works with two fully connected layers, with input defined as
one subject’s voxel pattern of activity on every temporal vol-
ume of an acquired fMRI image in the target ROI in the DecNef
study used, and the goal state defined as the target voxel pat-
tern of activity in that same ROI according to the ROI-based
classifiers trained in that study. We tested whether this dif-
fusion model would be able to learn to satisfy the pre-trained
classifier on the ROI across 24 subjects in the DecNef dataset.

Results and Discussion
In the initial phase, our model underwent training and eval-
uation using a simulated dataset (random 32×32 patterns),
employing the Sum of Squared Error (SSE) as the objective
function. The model progressively enhanced its cumulative
reward across successive training epochs (Figure 1B).

Subsequently, the model was trained using the dataset pro-
vided by (Shibata et al., 2016). Target ROIs across subjects
varied in size/dimensions between 219 and 221. A separate
model was developed for each of the 24 participants. The
learning curve for the model across all subjects is depicted
in Figure 2. That each individualized model can successfully
learn to produce the individualized target pattern of voxel ac-
tivity for each subject demonstrates that policies have been
successfully discovered for transforming any voxel input image
into the target images that satisfy the pre-trained classifier.

The primary objective of this study is to discover a policy
network employed in the diffusion model that may in future be
mapped to neural activity patterns, e.g. via encoding mod-
els or similar. Consequently, we maintained the model’s sim-
plicity, opting for a two-layer fully connected network to avoid
complexity that might obscure the underlying mechanisms.
While this configuration yielded satisfactory performance on
test datasets with dimensions under 1000, more complex ar-
chitectures will likely be required to handle higher dimensional
data. For such scenarios, we plan to implement more complex
models similar to those described in (Orouji et al., 2022; Orouji
& Peters, 2022), which have demonstrated promising capabil-
ities in learning latent space representations of real fMRI data.
Ultimately, our approach has the potential to map learned poli-
cies for successful—or unsuccessful—DecNef to brain states
and networks, significantly enhancing our understanding of
when and how DecNef can be used to successfully modulate
brain states in awake, behaving humans.
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Figure 2: Model Learning Curve on Real Data: Following
initial training, the model was further developed using (Shibata
et al., 2016)’s dataset, with separate models tailored for each
of the 24 participants based on their specific data.
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