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Abstract
Cognitive psychologists often model task preparation us-
ing dynamical systems theory, however the neural corre-
lates of these cognitive dynamics remain poorly under-
stood. We bridged between cognitive and neural theories
by fitting linear dynamical systems to human EEG record-
ings during task switching. Using a control theoretic anal-
ysis of the fitted dynamical system, we found that partic-
ipants showed stronger propagation of task information
when switching tasks than when repeating tasks. Similar
signatures of task control were evident in task-optimized
neural networks, consistent with this neural marker of
task reconfiguration reflecting an optimality principle.

Keywords: Task Switching, EEG, Dynamical System, La-
tent State Space, Recurrent Neural Network

Introduction Exciting recent work in cognitive psychology
models task preparation as a dynamical system (Musslick,
Jang, Shvartsman, Shenhav, & Cohen, 2018; Jaffe, Poldrack,
Schafer, & Bissett, 2023), however the neural bases of these
cognitive dynamics remain poorly understood. Here, our re-
search goals were to 1) validate methods for fitting macro-
scale state space models (SSMs) to human EEG recordings,
2) quantify how people control neural dynamics to implement
task-relevant brain states, and 3) compare metrics of neural
control across humans and recurrent neural networks.

Task & Sample. A complete description is available in Hall-
McMaster, Muhle-Karbe, Myers, and Stokes (2019). Thirty hu-
man participants performed a cued task switching experiment
during 61-channel scalp EEG recording (Fig 1A). On each
trial, participants responded to a compound stimulus based
on either its color or its shape. Before each trial, participants
were cued to the task-relevant feature and whether they would
earn bonus payment for good performance (not shown). We
analyzed epochs without recording artifacts or errors on the
previous/upcoming trial (M = 463 trials).

Model fitting. State space models are statistical models of
neural population activity with growing popularity in computa-
tional neuroscience (Smith & Brown, 2003; Macke et al., 2011;
Linderman, Nichols, Blei, Zimmer, & Paninski, 2019). Here,
we inferred how yt , the vector of EEG electrode voltages at
time t, arises from the linear projection of the latent state vec-
tor xt (i.e., neural generators; Fig 2A). Formally, yt =Cxt +vt ,
where C is a matrix of projection weights and vt ∼ N (0,R) is
Gaussian noise. The latent state xt evolves linearly over time
according to xt = Axt−1 +But−1 +wt , where A is the recur-
rent dynamics, B is the projection of input vector ut (e.g., task
conditions), and wt ∼ N (0,Q) is Gaussian noise.

We modeled inputs as boxcar functions over the task cue
(Fig 2B). Inputs included a constant bias, task identity, the spe-
cific cue stimulus, task switch vs. repeat, subsequent reaction
time (RT), high vs. low reward, and the two-way interactions
between task and each of switch, RT, and reward.

We fit SSMs to each participant using a custom
expectation-maximization procedure in Julia. Before fit-
ting, we projected each participants’ electrode timeseries
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Figure 1: Model validation. A) On each trial, participants per-
formed a pre-cued task (50% switch rate). B) We modeled
the latent timeseries x1:T that gives rise to our electrode time-
series y1:T , assuming linear dynamics, linear observations,
and Gaussian noise. C) Top: The best-fitting models had
more latent dimensions than observed dimensions. Bottom:
SSMs fit better than vector autoregressive (VAR) models fit
directly to the observations. D) Next-timestep prediction for a
single held-out trial. Black line: EEG voltage, red dashed line:
model prediction. E) Accurate recovery of SSM parameters
(only a subset shown, but good performance throughout).

onto principal components capturing 99% of the variance
(15-28 components). We initialized our parameter esti-
mates with subspace identification (Stone, Sagiv, Park, &
Pillow, 2023), using an ‘instrumental variable’ method from
ControlSystemIdentification.jl.

SSM validation. We chose the number of latent di-
mensions (dimx) through cross-validation. The best-fitting
dimxwas substantially larger than the effective observation di-
mensionality (dimy; Fig 1C). Fitted SSMs could accurately fil-
ter held-out data (Fig 1D), with much better accuracy than au-
toregressive models fit directly to the component timeseries.
Despite high dimx, we could accurately recover parameters
from simulated data (up to invertible transformation; Fig 1E).

Neural indices of task control Plotting the posterior esti-
mates of latent state, we found that neural states for each task
separated over time after the cue (Fig 2A).

We wanted to quantify how task-related neural dynamics
change under the hypothesized deployment of cognitive con-
trol during task switching. To answer this question, we turned
to a classical control theoretic metric of controllability (Kao &
Hennequin, 2019). We developed a modified form of the con-
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Figure 2: Neural signatures of task control. A) Posterior latent
state estimates, averaged over trials in each task (red vs blue)
for an example participants. Projected onto the top eigenvec-
tors of Wc (i.e. the controllable subspace) and smoothed for
visualisation. B) Average Task Wc was significantly higher for
switch and repeat trials. C) GRU fit across different variants.
Fit is assessed on noiseless inputs, whereas the model is fit
to noisy inputs. Ablating the reset gate (fixing to open) has lit-
tle cost to performance. In contrast, ablating the update gate
(fixing to open) prevents the network from mastering the task,
resulting in similarly poor performance as un-gated RNNs. D)
PCA projection of hidden unit activations, averaged over trials.
Red/blue lines indicates the first trial (Shape 1 & Color 1), ma-
genta/cyan lines indicates the second trials (Shape 2 & Color
2). Note that in repeat trials (top) trial 2 stays in the same lo-
cation at trial 1, whereas in switch trials (bottom) they swap
locations. E) Similar to participants, SSMs fit to GRU hidden
unit activations showed better test liklihoods at high latent di-
mensionality. F) Similar to participants, average Task Wc in
GRUs was significantly higher for switch trials than repeat tri-
als.

trollability gramian (Wc), which indexes the asymptotic spread
of input energy throughout a system:

Wc = (
∞

∑
t=0

AtQAt⊤)−1
∞

∑
t=0

AtBB⊤At⊤

We whitened the gramian with the estimated asymptotic
state noise (inverse term). This normalization accounts for
noise, and makes our metric invariant across the SSM solution
manifold (see also: Bouchard & Kumar, 2024). We computed
Wc by solving the corresponding discrete Lyapunov functions.
To isolate the effect of task in particular, we only used the
columns of B that coded task identity (btask). To test how task-
based control met the cognitive demands of task switching,
we contrasted the ‘average task controllability’, trace(Wc),
between switch and repeat trials.

We found that ‘task control’ was stronger on switch trials
than repeat trials (permutation p = .019; Fig 2E), consistent
with the active reconfiguration of neural states to implement
a new task. While incentives and subsequent RTs were en-
coded during this period (not shown), we did not find strong
evidence that these factors modulated task control.

Gated recurrent unit (GRU) model. To understand
whether optimized systems show our putative indices of task
control, we next explored how gated recurrent neural networks
switch between similar tasks (Cho et al., 2014). Using Py-
Torch, we trained a GRU (1× 108 hidden units) on epochs
containing sequential pairs of trials. Mimicking the behavioral
experiment, the network received (noisy) inputs for the task
cue and the stimulus features.

We found that GRUs quickly learn this task (Fig 2C). Gate
ablations revealed a key role for the ‘update’ gate that controls
integration timescales (Krishnamurthy, Can, & Schwab, 2022),
a potential mechanism for changing the previous task state.

Task control in GRUs. We visualized hidden unit activa-
tions using PCA, finding that GRUs learned distinct represen-
tations for each task, regardless of trial order (Fig 2D).

To quantify these dynamics, we fit our SSM to the GRU
hidden unit activations during the second cue period using
subspace identification. We included inputs for task, switch,
and task×switch. Mirroring participants, the best dimx was
greater than the PCA-reduced dimy (Fig 2E) and our linear
model could accurately predict GRU dynamics (R2

CV = .90).
In our critical test, we compared the GRU’s average task

Wc between switch and repeat trials. The GRU showed the
same key signature as participants: higher average task Wc
when switching tasks than when repeating tasks (Fig 2F).

Conclusions. Our analyses reveal a control theoretic sig-
nature of how natural and artificial neural systems dynamically
reconfigure task processing. Speculatively, this index of neu-
ral control may reflect the deployment of attention to gate task-
relevant representations (Braver & Cohen, 1999). Future work
could extend these methods to explore source-localized neu-
ral dynamics, and to explicitly test theories of optimal feedback
control over neural states (Ritz, Leng, & Shenhav, 2022).
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