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Abstract

In neuroscience, a critical goal is to develop computa-
tional models for explaining cortical responses to sen-
sory stimuli. It has been widely recognized that, when
evaluating the similarity between brain and model repre-
sentations, it is necessary to estimate the noise ceiling of
cortical activity measurements. However, one important
source of noise that has been neglected is the reliabil-
ity of the models themselves. For deep neural networks,
a natural criterion is the consistency of representations
learned across different random initializations. Here we
demonstrate how to account for the reliability of both
brains and models when assessing their similarity, using
a metric called integrated reliability integrated reliability.
We used simulated data to validate integrated reliability
as a more accurate measure for evaluating the limitations
in representational modeling compared with conventional
noise ceiling estimates based on brain reliability alone.
Furthermore, through analyses on actual neural networks
and brain representations, we show that model reliability
is a key constraint on representational modeling results
in neuroscience. Our findings underscore the need to
identify and mitigate model variability for improving com-
putational models of cortical representation.
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Introduction

Deep neural networks (DNNs) have demonstrated remarkable
success in modeling the representations of biological sensory
systems (Kriegeskorte, 2015; Richards et al., 2019; Yamins
& DiCarlo, 2016). However, the evaluation of model-brain
similarity faces challenges due to internal noise in the mea-
sured representations. This has traditionally been addressed
by estimating a noise ceiling of cortical activity measurements,
often defined as the reliability of representations across tri-
als or subjects, which is thought to be the maximum simi-
larity any model can theoretically achieve (Kriegeskorte, Mur,
& Bandettini, 2008; Conwell, Prince, Kay, Alvarez, & Konkle,
2023). Meanwhile, the variability in DNN representations has
been largely overlooked, since individual models, when as-
sessed in isolation, generate deterministic outputs. Neverthe-
less, the feature learning process in DNNs is inherently non-
deterministic, influenced by factors such as initialization and
dropout. Research has demonstrated that models differing
only in their initialization seeds can exhibit significant repre-
sentational variations (Mehrer, Spoerer, Kriegeskorte, & Kietz-
mann, 2020). Further studies have revealed that the individual
dimensions of neural network representations vary greatly in
their reliability, with some learned universally across all initial-
izations and others exhibiting no reliability whatsoever across
different initializations (Chen & Bonner, 2023).

In this work, we describe a metric, integrated reliability, that
accounts for the reliability of both human brains and DNNs.
We validated integrated reliability by simulating model and

brain representations with ground-truth similarity, confirming
that our metric accurately reflects the true underlying relation-
ship across datasets. Moreover, we characterized the com-
plex nature of reliability in actual DNNs and reveal its impact
on patterns of representational similarity to the human brain.
Our findings highlight the importance of assessing the reliabil-
ity of model representations to gain a deeper understanding
of the limitations present in current representational models of
the human cortex.

Methods

We generated simulated data for models (X) and brains (Y)
and manipulated both their internal reliability (ry, and ry,) and
their ground-truth representational similarity to one another.
The simulated data had power-law eigenspectra matching the
eigenvalue distributions of actual neural networks and human
brain representations (Gauthaman, Ménard, & Bonner, 2023),
and we manipulated the reliability and representational simi-
larity of each principal component. We computed observed
similarity scores by taking the correlation (r,,) between paired
dimensions of (X) and (Y).

The integrated reliability of (X) and (Y) is the maximum cor-
relation that can be observed between (X) and (Y) given their
noise ceilings, and it can be computed as the square root of
the product of their internal reliabilities: \/W Note that
for simplicity, we assume that the representations of (X) and
(Y) have already been aligned along putative shared dimen-
sions, which is typically accomplished by first fitting encoding
or decoding models. Nonetheless, this approach readily gen-
eralizes to real data that have been analyzed with encoding or
decoding models.

Results & Discussion

Figure 1 shows the observed similarity scores, ryy, and inte-
grated reliability scores, , /FxTyy, for instances of (X) and (')
with varied levels of ground-truth similarity and internal relia-
bility. Figure 1b illustrates a scenario in which the observed
similarity scores, ryy, have an upper bound that is determined
by the ground-truth representational similarity of (X) and (Y).
In this scenario, our simulations yield a range of integrated re-
liability scores, but even for highly reliable dimensions on the
right side of the x-axis, r,, remains below the diagonal. Be-
cause ryy is substantially less than the integrated reliability in
this scenario, we know that there are fundamental differences
between the representations of (X) and (Y) that cannot be at-
tributed to limitations in model and data reliability. In contrast,
Figure 1c illustrates a scenario in which the observed similar-
ity scores, 1.y, have an upper bound that is determined by the
integrated reliability of (X) and (Y). In this scenario, we can-
not determine whether any observed differences between (X)
and (Y) are due to fundamental differences in their represen-
tations or instead to the limited reliability of model instances
and brain recordings.

These scenarios highlight important implications for how we
interpret representational modeling analyses. For example, if
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Figure 1: (a) Similarity scores were computed across simulated representations of models and brains (r,,) and reliability scores
were computed across different instances of these simulated representations (r,; and ryy). (b-c) These panels show the relation-
ship between integrated reliability and similarity scores for simulations using different levels of ground-truth similarity and internal
reliability. In panel b, the simulations have varied ground-truth similarity, and this sets the upper bound on observed similarity
scores. In panel ¢, the simulations have varied internal reliability distributions, and in this case, it is reliability that sets the upper
bound on observed similarity scores. (d) Simulated representations in which both ground-truth similarity and internal reliability
vary as a function of principal-component rank. This simulation closely matches the findings for real DNNs and human fMRI

data, using ResNets trained with different random seeds (Schirholt et al.,

Scenes Dataset (Allen et al., 2022).

observed similarity scores reach the integrated reliability ceil-
ing, it raises the possibility that the model is already funda-
mentally correct and that the observed similarity scores are
simply limited by noise in the data. In this scenario, the only
way to determine whether a model has shortcomings is to in-
crease the reliability of both the model and the brain data.

We next explored a scenario in which ground-truth similar-
ity and internal reliability exponentially decreased as a func-
tion of principal-component rank. We were specifically inter-
ested in this scenario because we observed related trends
in DNNs and fMRI data and because many natural datasets
have signals that decay exponentially at high-rank principal
components. As shown in Figure 1d, this scenario yields a
nonlinear relationship between observed similarity and inte-
grated reliability. Here the most reliable dimensions also have
high ground-truth similarity across (X) and (¥), while less re-
liable dimensions have lower ground-truth similarity. We fur-
ther compared this scenario with real data from DNNs and
fMRI recordings, and we found that this simulation closely
reproduces the relationship between similarity and reliability
observed in real models and brains. This suggests that the
similarities between DNNs and brains decrease rapidly as a
function of principal-component rank, even though these rep-
resentations are, nonetheless, reliable across many ranks in
both brains and DNNs.

In sum, our work demonstrates the importance of account-
ing for the reliability of both brain recordings and computa-
tional models when assessing their representational similar-

2022) and visual cortex fMRI data from the Natural

ity. The integrated reliability metric illustrated here can help
to properly interpret the successes and failures of representa-
tional models and to distinguish between cases where models
are fundamentally misaligned with the brain or where improve-
ments are still possible by increasing the reliability of both
models and brain recordings.



References

Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Prince, J. S.,
Dowdle, L. T, ... others (2022). A massive 7t fmri dataset
to bridge cognitive neuroscience and artificial intelligence.
Nature neuroscience, 25(1), 116-126.

Chen, Z., & Bonner, M. (2023). Canonical dimensions of vi-
sion. In 2023 conference on cognitive computational neu-
roscience. Cognitive Computational Neuroscience. doi:
10.32470/ccn.2023.1588-0

Conwell, C., Prince, J. S., Kay, K. N., Alvarez, G. A., & Konkle,
T. (2023). What can 1.8 billion regressions tell us about the
pressures shaping high-level visual representation in brains
and machines? bioRxiv.

Gauthaman, R. M., Ménard, B., & Bonner, M. (2023). Re-
vealing the high-dimensional latent structure in visual corti-
cal representations. In 2023 conference on cognitive com-
putational neuroscience. Cognitive Computational Neuro-
science. doi: 10.32470/ccn.2023.1652-0

Kriegeskorte, N. (2015). Deep neural networks: a new frame-
work for modeling biological vision and brain information
processing. Annual review of vision science, 1, 417-446.

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Rep-
resentational similarity analysis-connecting the branches of
systems neuroscience. Frontiers in systems neuroscience,
4.

Mehrer, J., Spoerer, C. J., Kriegeskorte, N., & Kietzmann,
T. C. (2020). Individual differences among deep neural
network models. Nature communications, 11(1), 5725.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bo-
gacz, R., Christensen, A., ... others (2019). A deep
learning framework for neuroscience. Nature neuroscience,
22(11), 1761-1770.

Schiirholt, K., Taskiran, D., Knyazev, B., Gir6-i Nieto, X., &
Borth, D. (2022). Model zoos: A dataset of diverse popu-
lations of neural network models. Advances in Neural Infor-
mation Processing Systems, 35, 38134-38148.

Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep
learning models to understand sensory cortex. Nature neu-
roscience, 19(3), 356-365.



