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Abstract
The dynamic range of a sensory system reflects the sig-
nal levels for which the system is responsive. We pro-
pose that dynamic range trades-off between inference
(e.g. accuracy, encoding capacity) and dynamic features
(e.g. adaptation and updating rates) of the neural compu-
tation. We take Autism Spectrum Disorder (ASD), which
displays distinct neural and behavioral characteristics
compared to the neurotypical (NT) population and show
how known results, such as slower environmental adapt-
ability, altered decision-making processes, and altered
sensory encoding can be explained by the computational
principle of increased dynamic range.
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Introduction
In recent years, research has mapped many differences
between people diagnosed with Autism Spectrum Disorder
(ASD) and the neurotypical (NT) population. These differ-
ences are reflected in adaptation to changes in the environ-
ment (Vishne et al., 2021; Lieder et al., 2019), decision mak-
ing (Robertson, Martin, Baker, & Baron-Cohen, 2012; Van der
Hallen, Manning, Evers, & Wagemans, 2019) and neural en-
coding (Noel, Zhang, Stocker, & Angelaki, 2021) to name a
few. Despite great advances in mapping the myriad of behav-
ioral and neuronal differences, the underlying computational
principle that drives them is yet unclear.

A main goal of autism research is finding the driver for the
differences in ASD neural activity and behavior. To this end,
several computational models have been suggested (Sinha et
al., 2014; Van de Cruys et al., 2014; Pellicano & Burr, 2012;
Lawson, Rees, & Friston, 2014; Lieder et al., 2019; Ruben-
stein & Merzenich, 2003; Rosenberg, Patterson, & Angelaki,
2015), and while they provide insights into different behavioral
and neural markers that may be linked to ASD, a concrete
unifying computational principle that explains the wide range
of atypical behaviors and neural activity associated with ASD
remains elusive. In this work, we suggest that differences be-
tween ASD and NT stem from a simple computational princi-
ple manifested in the dynamic range of the neuronal popula-
tions when encoding signals. Specifically, we hypothesize that
ASD have an increased dynamic range (IDR) compared with
NT with a narrow dynamic range (NDR). This computational
principle trades-off inference (e.g. accuracy, encoding capac-

Figure 1: An increased dynamic range entails slower up-
dating in response to abrupt changes. (A) A single sim-
ulation of tracking an abrupt change in the mean of a noisy
signal. Black line - mean signal, Grey line - noisy samples.
The noisy signal was encoded by two different populations -
gradual population response (Red, n = 7) and sharp popula-
tion response (Turquoise, n = 16), and then estimated using
Kalman filter. (A, Inset) A histogram of response times to
the abrupt change. (B) Histogram of the Hill-coefficients fitted
to each individual participant data(Vishne et al., 2021) (C, D)
Data and Model fit to ASD (panel C) and NT (panel D) on the
group tracking dynamics from Ref(Vishne et al., 2021)

ity) and dynamic features (e.g. adaptation and updating rates)
of the neural computation, and explains some phenomena ob-
served in individuals diagnosed with ASD.

Results

Model formulation Dynamic range is the range of input sig-
nal values in which the sensing system is responsive. The
larger the dynamic range is, the more gradually the system
changes from no response to full response. We use the sig-
moidal Hill-equation (Hill, 1910) to model the averaged neu-
ronal population response:

Apop (S) =
Sn

Sn +Kn
m

(1)

Where Apop(S) is the averaged population neural gain (re-
sponse) to an input signal S, n is the Hill coefficient, and Km
is the half-activation point of the response function (where the
response function reaches half of its maximum value).



Figure 2: Increased dynamic range induces elevated de-
tection thresholds in decision making for short integra-
tion times. (A) Illustration of the Leaky Competing Accumu-
lator (LCA) model used to simulate the decision-making pro-
cess (Usher & McClelland, 2001). (B) The LCA model signal
detection levels that elicit 80% correct responses for a nar-
row dynamic range (NDR, sharp response) and an increased
dynamic range (IDR, gradual response) encoders at different
maximal simulated decision times. (C) Adaptation of Fig. 3
from a motion coherence task experiment by Robertson et al.
(2012).

An increased dynamic range entails slower updating
rates to abrupt changes Individuals diagnosed with ASD
show slower updating rates to changes in the environment
in auditory and motor tasks (Lieder et al., 2019; Vishne et
al., 2021). Using Kalman filter for tracking, we estimated the
mean input signal from encoded responses to a noisy time-
series with an abrupt change. We found that a gradual neu-
ronal population response (IDR) shows slower updating of
the estimated signal level. To test the model’s predictions,
we compared it to the change dynamics from Vishne et al.
(2021) experiment(Vishne et al., 2021) (Fig. 1C, D respec-
tively). Consistent with our model predictions, on the individ-
ual level the fitted curves result in lower Hill coefficients for
the ASD group (mean±ste, ASD: 8.5 ± 0.2, NT: 13 ± 0.1,
Mann-Whitney test U = 852, p< 10−3). Similarly, on the aver-
aged group level we fitted the model to the averaged response
curve of all participants for each change in tempo (Fig. 1D).
We find lower Hill coefficients for the ASD group (mean ±
ste, nASD = 7.4± 0.1 and nNT = 14± 0.1, permutation test,
p < 10−3).
An increased dynamic range increases the detection
thresholds for accurate decision making The Motion Co-
herence Task(Van der Hallen et al., 2019) where participants
need to integrate moving dots velocity to decide on a global
direction also shows ASD to NT differences in the detection
thresholds. A study by Robertson et al. (2012) probed the ef-
fect of integration time on the detection thresholds and found

Figure 3: IDR changes the encoding scheme and re-
duces the total encoding capacity. (A) Encoding capacity
curves for response function with different Hill-coefficient val-
ues, n. (A, Inset) Total encoding capacity. (B) An increased
excitation-inhibition ratio model predicts an increase in the en-
coding capacity as inhibition is decreased. (B, Inset) Total
encoding capacity as a function of the inhibitory strength. (C)
Fitted Hill coefficientsto the ”without feedback” block in Noel
et al. 2021 for the ASD (Red) and NT (Turquoise) participants
(D) Distributions of total encoding capacities for the ASD and
NT participants from Noel et al. 2021.

increased thresholds for ASD for short stimulus durations, and
comparable thresholds when stimulus viewing durations were
long enough (Fig. 2C). To test the performance of the in-
creased dynamic range (IDR) model in this task, we used a
known neural model of 2AFC decision making - the Leaky,
Competing Accumulator (LCA) model (Usher & McClelland,
2001), which we simulated with an increased dynamic range
(IDR, gradual response) and a narrow dynamic range (NDR,
sharp response) encoding functions (nIDR = 8,nNDR = 16,
Fig. 2A, second step, Red & Turquoise lines, correspond-
ingly). Our simulations replicated the results of Robertson et
al. (Robertson et al., 2012) by changing only the slope of the
encoding function (the Hill-coefficient) highlighting its critical
role.

An increased dynamic range alters the encoding scheme
We considered the population response to a each signal level
as the mean firing rate of a Poissonian neuron and derive
a closed-form encoding capacity equation for the population

response: IF (S) = n2K2n
m Sn−2

(Sn+Kn
m)

3 . The total encoding capacity

(
∫ 1

0 IF(S)dS) increases linearly with the Hill-coefficient n of the
mean firing rate function (see Fig. 3A, Inset) We also fit the in-
creased dynamic range model to the data presented by Noel
et al. (2021) and find that fitted Hill-coefficients are lower for
the ASD group’s data (Fig. 3C-D).

Discussion
We proposed that a simple computational principle, increased
dynamic range of the neuronal population response, accounts



for neuronal and behavioral differences between ASD and NT.
The dynamic range of the encoding function presents a com-
putational tradeoff between accurate encoding and fast re-
sponse to an abrupt change in the input signal. On a broader
scale, the increased dynamic range model opens new av-
enues of investigation of the slope of encoding functions as
a general principle of neural computation.
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