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Abstract
Conserved topographies (e.g. retinotopy, tonotopy, so-
matotopy) and idiosyncratic population codes provide
complementary accounts of neural representation at dif-
ferent scales. We use fMRI to examine which best ex-
plains human cortical function at mesoscale (mm to cm)
where these accounts intersect and remain unsettled. We
compare interindividual functional correspondence up to
a low dimensional topography preserving warp (diffeo-
morphisms) or a high dimensional projection that pre-
serves population code feature spaces (hyperalignment).
Unlike previous studies our comparison is matched on
training data and spans the full brain. When align-
ments computed from spontaneous activity were applied
to a battery of task evoked responses, diffeomorphic
warps predicted responses better in unimodal cortical ar-
eas while hyperalignment predicted responses better in
transmodal areas. This is consistent with classic topo-
graphic representations of peripheral sensation and con-
trol, but demonstrates conserved feature spaces rather
than topographies provide a better account of higher or-
der computations in biological neural networks.
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Introduction
There is strong evidence brain function is spatially organized
at fine scale (Penfield & Boldrey, 1937). This provides a com-
pelling embodied account of neural representation (retinotopy,
somatotopy and tonotopy), is predetermined by conserved ge-
netic mechanisms (Grove & Fukuchi-Shimogori, 2003) and
pre-sensory spontaneous activity (Torborg & Feller, 2005),
and generalizes to higher order brain areas (Steel et al., 2024)
and across architecturally distinct brain structures (Xue et al.,
2021; Nambu, 2011). Thus, the relative location of neurons
informs their function.

A complementary perspective holds that neurons respond
to computationally relevant but abstract features (Hubel &
Wiesel, 1962), and distinct attributes or action sequences are
encoded by overlapping populations of neurons. Abstract fea-
ture spaces are defined by the most frequent patterns of ac-
tivity, and information propagates downstream by joint popu-
lation readouts (Churchland et al., 2012). Population codes
are idiosyncratic, in part because they develop in an experi-
ence dependent manner (Wiesel & Hubel, 1963; Roe et al.,
1990), but multiple codes can represent the same feature
space and studies in both biological and artificial networks
show they often do given similar learning conditions (Morcos
et al., 2018; Saxe et al., 2019; Jiahui et al., 2023). These prin-
ciples cannot be reconciled with ordered topographies and are
instead thought to be nested within them, suggesting a qual-
itative transition in the organization of cortical representation
at ≈1mm scale (Hubel & Wiesel, 1977).

A body of work now claims feature spaces are more con-
served across individuals than mesoscale (1mm-1cm) to-
pographies (Haxby et al., 2011). Topographic consistency is

measured by spatial correlations of neural responses across
brains after interindividual alignments that preserve spatial
continuity (”diffeomorphic” alignment) (Robinson et al., 2018).
Feature spaces can be compared on equal footing if popu-
lation codes are reprojected between brains using high di-
mensional rotations (”hyperalignment”). Crucially, this disrupts
spatial contiguity but not feature spaces, and reveals substan-
tial interindividual functional correspondences that are other-
wise hidden. Unfortunately, hyperalignment studies are often
confounded by ensemble learning techniques (Guntupalli et
al., 2016, 2018), never directly compare hyperalignment to
diffeomorphisms with matched training data (Bazeille et al.,
2021), a negative control, and neglect biological and compu-
tational diversity throughout the brain which might affect the
extent of stereotyped & innate vs. idiosyncratic & experience
dependent organization, oversights we now address.

We compare interindividual correspondence in fine scale
topographies and feature spaces using multivariate diffeomor-
phic alignment and parcel-wise hyperalignment (respectively).
We train alignments using matched spontaneous activity at
rest and test on responses to a battery of sensory, motor and
cognitive tasks. We specifically test for differences between
unimodal areas with known topographies and higher order
multimodal and transmodal areas (Mesulam, 1998) using the
previously published principal gradient of cortical organization
(Margulies et al., 2016).

Methods
Brain Parcellation
We defined an HCP 91k grayordinate space, full brain, com-
posite atlas (CANLab2024; includes (Glasser et al., 2016)
and others) of 518 parcels designed to delineated the finest
structural and functional distinctions available in the human
brain so that parcel-wise hyperalignment would not map sig-
nals across distinct neural architectures.

Data and Participants
We used 3T BOLD fMRI data from unrelated participants in
the Human Connectome Project (N=278), including 4x 15
minute resting state (Smith et al., 2013) and 7 task scans.
Task evoked response estimates are mean evoked BOLD
contrast above baseline and were precomputed by the HCP
(Barch et al., 2013). Functionally aligned ”MSMAll” data was
not used.

Resting state connectomes Resting state data was de-
trended, corrected for motion, global signal and csf, bandpass
filtered (0.1-0.008Hz), had volumes 1-4 removed, and time-
series z-scored and concatenated across scans. Functional
connectivity was computed as Pearson correlation between
each voxel/vertex and the mean timeseries of each of brain
parcel (518 x 91k connectome).

Alignment
Pairs of resting state connectomes were aligned (N=139
pairs). Two diffeomorphic alignments were enchained, and



Figure 1: A. Change in between subject correlations (∆BSC) of task evoked responses after parcel-wise hyperalignment on
resting state geometry relative to multivariate diffeomorphic alignment (t > 4.02, p < 1e-4, Holm-Sidak corrected; t-stat shown).
B. Hyperalignment is more effective in transmodal than unimodal areas (gradient loading regressed on ∆BSC, random subject
effects, t139 =−15.3, p< 1e-6). Group mean ∆BSC shown. Improvement with diffeomorphic alignment over structural alignment
shown as negative control (gray). Below: Principal gradient of macroscale cortical organization (Margulies et al., 2016).

in between connectomes were recomputed. Hyperalignment
came last. Obtained transformations were applied to task
evoked response data in the same order.

Diffeomorphic alignment Multivariate diffeomorphic align-
ment was implemented using MSM (Robinson et al., 2018)
or ANTs using hyperparameters adapted from (Glasser et al.,
2016) or sMRIprep for surfaces and volumes (respectively).

Hyperalignment We introduce a novel subspace hyper-
alignment algorithm that is mean-invariant. Traditional hyper-
alignment (Haxby et al., 2011) preserves angular distance and
vector norm, but not the mean, e.g. a global sign flip is permit-
ted, but this is a significant biological parameter independent
from our question. We define a mean operator as a vector
xi = x j∀i, j, and compute the forward and reverse orthogonal
transformations, F and F−1, that rotate this vector to and from
the component vector x1. We apply F to moving and fixed im-
ages and then compute an orthogonal transformation, R, to
align the residual vertices x j 6=1. FRF−1 yields mean invariant
hyperalignment. To compute R we use FastSRM (Richard &
Thirion, 2023) which outperforms other orthogonal hyperalign-
ment algorithms (Bazeille et al., 2021).

Results and Discussion

Hyperalignment achieved better intersubject correspondence
in transmodal areas than diffeomorphic alignment, but diffeo-
morphic alignment was superior in unimodal areas like vi-
sual cortex and somatosensory strip (Figure 1A). When com-
pared with an a priori unimodal to transmodal gradient map

(Margulies et al., 2016), hyperalignment success was signifi-
cantly correlated with the degree of representational abstrac-
tion. While diffeomorphic alignment also produced consis-
tent and widespread improvements in intersubject correspon-
dence relative to structural alignment, no similar association
was apparent (Figure 1B). This indicates that improved inter-
subject correspondence in these regions is not simply a con-
sequence of functional alignment with task-free resting state
data, but rather is specific to functional hyperalignment. No-
tably, a similar pattern emerged in subcortical areas. Diffeo-
morphic alignment outperformed hyperalignment in anterior
cerebellum and vice versa in posterior cerebellum, consistent
with known somatotopic maps in the anterior lobules (Xue et
al., 2021).

While topographic organization offers a useful account
throughout the brain, the relative superiority of hyperalign-
ment in transmodal brain areas shows fine scale topographies
in these regions may be less informative and recommends
measures of shared representational features instead. Con-
versely, the disruption of functional organization of sensory
motor regions by hyperalignment suggests topographic orga-
nization in unimodal areas may be uniquely precise and im-
portant.
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