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Figure 1: a) Transformations of DNN activation maps. b) Prediction timecourse for encoding models using transforms in a) at a
posterior (Iz) and central electrode (Pz). c) Topoplots of t-tests for GCS vs. full transform at 4 time points (FDR-corrected).

Abstract
Encoding models are a powerful tool for predicting neural re-
sponses on a per-image basis using the features of deep
neural networks (DNNs). Efforts to improve prediction per-
formance have largely focused on changing aspects of DNN
training or model architecture. Here, we take a pre-trained
DNN and explore whether a fixed, spatial reweighting of fea-
tures can improve neural predictions without the need for re-
training the neural network. We find that spatially distinct ar-
eas of visual input (center versus periphery) uniquely con-
tribute to the temporal dynamics of human EEG recordings.
These dynamics are unified when transforming feature maps
based on ganglion cell sampling (GCS). The same GCS trans-
form improved predictions of both monkey electrophysiology
and human fMRI recordings.

Keywords: Encoding models; Deep neural network; EEG; Vi-
sual Processing

Introduction
Deep neural networks (DNNs) have recently emerged as
state-of-the-art models of primate visual processing. Linear
encoding models that regress neural data onto convolutional
features of task-optimized DNNs achieve high performance
across multiple modalities, including EEG (Gifford, Dwivedi,
Roig, & Cichy, 2022), MEG (Seeliger et al., 2018), BOLD
(Storrs, Kietzmann, Walther, Mehrer, & Kriegeskorte, 2021),
and electrophysiology (Yamins et al., 2014). While substantial
research has studied effects of training strategy (e.g., super-
vised vs. self-supervised), training dataset, or model archi-
tecture (e.g., CNNs vs. Transformers) (Conwell, Prince, Kay,
Alvarez, & Konkle, 2022), less is known about the optimal way
of mapping DNN features into a neural space.

Unlike standard DNNs, primate brains do not uniformly
sample visual input. The eye has a foveal region with a high
density of cones and retinal ganglion cells (RGCs), and a pe-
riphery with low cone and RGC density (but high rod density)
(Oyster, Takahashi, & Hurst, 1981; Kreiman, 2021). The non-
uniform distribution of RGCs yields an over-representation of
foveal input which projects to substantially more brain volume
than peripheral input (cortical magnification, (Cowey & Rolls,

1974)). While several studies have explored effects of apply-
ing retina-like transformations on DNN performance (Lindsey,
Ocko, Ganguli, & Deny, 2019; Deza & Konkle, 2020), this non-
uniform differential sampling of foveal and peripheral informa-
tion is usually not taken into account when fitting neural data
with convolutional features from deep neural networks.

Here, we show that applying a simple spatial transformation
inspired by retinal sampling to DNN feature maps improves
encoding model performance across multiple datasets.

Methods
Neural datasets Human subjects (n=31) were presented
with 702 large, high-resolution images (2155x1440 pixels,
50x29.5° va) in a rapid-serial-visual-presentation (RSVP)
paradigm while EEG was collected. One trial consisted of
a series of 20 stimuli (100 ms) interspersed by gray screens
(300 ms). Subjects were instructed to fixate and detect tar-
get images presented in 50% of trials (targets were excluded
from analysis). 66% of the images were repeated 5 times
(the training split) and 33% 10 times (test split) across the ex-
periment. EEG data were preprocessed by creating 500 ms
epochs, demeaning, filtering, and removing bad trials, apply-
ing ocular correction and converting to Current Source Den-
sity responses. Epochs were averaged across repetitions,
creating ERPs specific to each subject, electrode and image.
We also used two datasets from Brain-Score (Schrimpf et al.,
2018) with electrophysiology recordings in V1, V2, V4, and IT
in macaques viewing textures and natural images, and fMRI
data from the Algonauts challenge 2023 (Gifford et al., 2023).

Encoding models Each image in the EEG dataset was
manually annotated with bounding boxes for 16 common ob-
ject classes. Cropping objects from the full images yielded a
new set of 82.236 images used to train an Alexnet (Krizhevsky,
Sutskever, & Hinton, 2012) on 16-way object classification. Af-
ter training, features were extracted for full scene images from
the three max-pooling layers. The following spatial transforms
were applied on each kernel’s activation map: cropping the
central 0.5% and keeping either (1) the central part (”Cen-
ter”) or (2) the surrounding part (”Periphery”), or (3) applying
a ganglion cell sampling (GCS) to the full image that magni-



Figure 2: Partial correlations of encoding models using other
models’ predictions as covariate.

fies central information and degrades peripheral information
(da Costa, Kornemann, Goebel, & Senden, 2023). A baseline
of no transformation (”Full”) was also included (Fig. 1a). The
transformed features were concatenated across maps and a
100-component PCA was applied. For each condition, a lin-
ear encoding model was fitted on the train split and prediction
performance was computed on the test split (Pearson corre-
lation). For encoding models on other datasets, we used an
ImageNet-trained Alexnet and code and default train/test splits
from Brain-Score and Algonauts.

Results

Compared to baseline, the GCS transform improves predic-
tions of EEG responses for the entire ERP time course (see
example electrodes in (Fig. 1b)). A whole-scalp comparison
between baseline and GCS (Fig. 1c) shows significant im-
provements across a large swath of posterior electrodes.

The GCS transform also outperforms models using cen-
ter and periphery crops, which themselves enhance encoding
model performance relative to baseline: center-crops show
better predictions than full for posterior Iz while periphery-
crops outperform full and center-crop at central Pz for the full
time course (Fig. 1b). The periphery-crop model also appears
to show an earlier rise and peak than center-crop (Fig. 1b).

To better understand how including, excluding, or re-
weighting central and peripheral information predicts EEG re-
sponses at specific time points, we computed partial corre-
lations for our different encoding model predictions using an-
other model’s predictions as a covariate (Fig. 2). Partial cor-
relations of center-crop encoding compared to periphery-crop
and vice versa (Fig. 2a) show a drastic difference in timing,
with periphery-crop uniquely explaining early variance and
center-crop uniquely explaining later variance.

Importantly, the GCS transform captures both the early
peripherally-dominated and late centrally-dominated process-
ing in the EEG signal (Fig. 2b-c). The center-crop predictions
(orange line) explain almost no unique variance when using
GCS predictions as covariate, while the opposite test (black
line) shows that GCS predictions explain substantially more
variance than center-crop information (Fig. 2b). A similar pat-
tern holds when comparing periphery-crop (blue line) against
GCS predictions and vice versa (Fig. 2c). Together, these re-
sults show that the GCS transform captures both dynamics

using a single, biologically-inspired transformation.
Given the clear improvement resulting from applying the

GCS transform on DNN predictions in our EEG data, we also
investigated if it improves DNN predictions on two publicly
available neural benchmarks (Fig. 3). We find clear benefits
in a subset of brain regions for both datasets, with strongest
effects in monkey V1 and V4 and in human V3 and hV4.

Figure 3: Comparison of Full vs GCS on monkey electrophys-
iology (Brain-Score) and human fMRI (Algonauts).

Discussion
Our findings show that inductive biases about retinal sampling
can be operationalized to reweight DNN features to improve
encoding models of primate neural responses.

The high temporal resolution of EEG recordings revealed
unique contributions of central and peripheral visual informa-
tion at distinct time points. These findings support models
of visual perception that suggest fast/early holistic scene pro-
cessing that is largely informed by peripheral information fol-
lowed by slow/late object-centered processing of foveal infor-
mation (Rosenholtz, Huang, Raj, Balas, & Ilie, 2012; Larson
& Loschky, 2009; Deza & Konkle, 2020). Both dynamics are
unified in the retinally-inspired GCS transform.

Importantly, we also tested the effect of applying GCS on in-
put images directly, which shows similar improvements. At the
same time, the transform shifts the input out-of-distribution,
compared to the images used during training, thereby poten-
tially impacting task performance and decreasing behavioural
alignment. Applying GCS on DNN features instead, yields
stronger improvements of predictions while preserving the in-
put distribution and task performance.

It is remarkable that a simple spatial reweighting of fea-
tures yields prediction improvements across multiple modali-
ties. The differing stimulus sizes across datasets yield varying
amounts of foveal and peripheral stimulation. Further studies
are needed to investigate the dependency on large field stim-
ulation for an improvement of GCS for predicting neural data.

Conclusion
Without the need for re-training or fine-tuning, applying GCS
during feature extraction is a simple transformation that better
captures the dynamics of primate visual processing.
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