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Abstract

In recent years, individual brain parcellations have be-
come increasingly popular in human brain imaging as
they provide better precision for functional localization
than population-based atlases. Yet, often, there is only
very little individual data available to define individual re-
gions. Here, we exploit a Hierarchical Bayesian Parcel-
lation (HBP) scheme to derive subject-specific parcella-
tions extracted from a limited amount of individual task
data and evaluate its performance using the Distance-
Controlled Boundary Coefficient. We compare the HBP
performance with Dual Regression and Dictionary Learn-
ing, two data-driven methods commonly used on resting-
state and task-based data. In particular, we demonstrate
that the Bayesian integration of individual data with a
group prior—inferred from a large deep-behavioral phe-
notyping resource—provides substantial advantages in
defining individual regions.
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Introduction

The functional organization of the human brain shows sub-
stantial inter-individual variability, posing significant chal-
lenges for the analysis of brain imaging data. Recent devel-
opments have demonstrated the benefits of individual- over
population-level parcellations (Glasser et al., 2016; Gordon et
al., 2017; Braga & Buckner, 2017; Kong et al., 2019). Data-
driven parcellation schemes, leveraging task-based functional
Magnetic Resonance Imaging (fMRI) data, have also been
used for the extraction of individual brain parcellations (Pinho
et al., 2021; Thirion, Thual, & Pinho, 2021; Thirion, Aggarwal,
Ponce, Pinho, & Thual, 2024). Yet, to obtain reliable individual
parcellations, a large amount of individual data is necessary.
The burdensome requirement to collect independent data as
a functional localizer before the main experiment explains why
this approach has not been widely adopted.

To enable consistent individual parcellations from restricted
data, we adopt herein a Hierarchical Bayesian Parcellation
(HBP) scheme that optimally combines information from a
group prior (probabilistic atlas) and individual data (Fig. 1 —
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Figure 1: Hierarchical Bayesian parcellation scheme. A
probabilistic group atlas (p(U)) is integrated with the individ-
ual data likelihood (p(Y;|U?)) to obtain an individual parcella-
tion (p(U$|Y?)) of the human cerebellum (top). The balance
between group parcellation and individual data is determined
by the concentration parameter k (bottom).

top). The group prior can be learned with the same frame-
work, integrating various task- and resting-state datasets (Zhi
et al., 2023; Nettekoven et al., 2024). The balance between
the group prior and the individual data is determined by the
inter-individual variability (encoded in the group prior) and the
concentration parameter for the data (estimated from their re-
liability, Fig. 1 — bottom). The posterior distribution of U* rep-
resents the probabilistic individual parcellation. We compare
the HBP model to two purely data-driven individual parcella-
tion techniques—Dual Regression (Nickerson, Smith, Ongiir,
& Beckmann, 2017) and online Dictionary Learning (Mairal,
Bach, Ponce, & Sapiro, 2009)—often employed in resting-
state and task-based fMRI data, respectively. We evaluate



the performance of the three methods when learning from 20
minutes of individual task-based data.

Methods

Based on the principles of functional specialization, we stipu-
late that behavioral tasks are formed of elementary cognitive
components associated with some sparse neural substrates.
For a set of individual brain maps Y* € R“*” where c is the
number of task conditions and p the number of voxels, a com-
mon k-dimensional representation (k < c) of the tasks, i.e.
V € R, and their individual spatial encoding U® € Rk*?
define our prediction output as follows:

¥ = VU, where U* >0, Vs € [N] (1)

We compare three models that minimize the difference be-
tween the original data Y* and the reconstructed data ¥* from
(1).Yet, loss function and optimization algorithm vary depend-
ing on the model (Table 1).

HBP Dual Regression Dictionary Learning
Estimation | E-step: NNLS: Sparse Coding:
MUV oV ¥) e minllV* = VU3 |min V"~ V(U) [, + U7
p(U)p(Y’|V)
Update of | M-step (V+x) |OLS: OLS:
Vi min[ Y~ VU3 | min][Y* — VU |,

Combined | CD until
estimation | convergence
of U* and | (EM-algorithm)

One step each CD until convergence

\%

Table 1: HBP, Dual Regression and Dictionary Learning.
The probabilistic approach of HBP contrasts with the multiple-
regression problem of Dual Regression and the non-negative
matrix factorization of Dictionary Learning. We compare differ-
ent optimization steps for V and U* estimation that minimize
the loss function. EM = Expectation Maximization; NNLS =
Non-Negative Least Squares; OLS = Ordinary Least Squares;
CD = Coordinate Descent.

Training and evaluation of the models were performed on
data from the human cerebellum using the Multi-Domain Task
Battery (MDTB) dataset (King, Hernandez-Castillo, Poldrack,
Ivry, & Diedrichsen, 2019): a task-fMRI dataset covering a va-
riety of cognitive domains and composed of two sessions per
participant (N=24). Models were trained on 20 minutes of data
from session 1 and evaluated on session 2, in a 8-fold cross-
validation scheme. Evaluation was always performed on
the entire session 2 (16 runs) using the Distance-Controlled
Boundary Coefficient (DCBC) (Zhi, King, Hernandez-Castillo,
& Diedrichsen, 2022), an unbiased metric which evaluates the
goodness of clustering accounting for the spatial smoothness
of fMRI data.

Results

For the HBP framework, both group and individual parcella-
tions lead to a good prediction of functional boundaries in the

test data. Importantly, however, the Bayesian integration of
group with individual parcellation outperforms each one by
itself (Zhi et al., 2023; Nettekoven et al., 2024). The inte-
grated estimate also outperforms Dual Regression (DR) and
Online Dictionary Learning (DL), highlighting the critical ben-
efit of combining evidence from individual data with a group
prior.

Among the data-driven models, DR shows the lowest
DCBC values, with DL outperforming it. While DR estimates a
subject-wise functional profile V¥, DL uses a group V. The
subject-specific estimation of DR may lead to overfitting—
especially when few data is available for training. However,
both models—relying on the individual data only—show lower
DCBC than the HBP parcellation. One possible disadvantage
of these two models with respect to HBP pertains to the fact
that they estimate V without using a spatial group prior.

To test this hypothesis, we plugged in the V, obtained from
HBP, to either model in order to estimate U* (see Table 1,
row 1). For both DR and DL, performance improved substan-
tially, confirming the benefit of the HBP estimation of V using
a group prior.

However, even when using the same V, the two models
performed worse than the HBP Individual. This result shows
the additional benefit of HBP arising from the probabilistic data
likelihood model (von Mises-Fisher Mixture model).
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Figure 2: DCBC evaluation of all prediction models across
splits and subjects. HBP model (G = Group; G + | = inte-
grated; | = Individual), Dual Regression (DR), and Online Dic-
tionary Learning (DL). NNLS and Sparse (aka Sparse Coding)
refer to the estimation of U* using directly the V-estimate from
HBP. Gray lines represent a significance level of p < 1e —4 for
paired t-tests. Every paired t-test compares the DCBC eval-
uation between two models. Each line refers to all possible
pairs of nodes forming it, wherein each node corresponds to
the model below it.

Conclusion

Traditionally, individual parcellations require an extensive
amount of data (Marek et al., 2018; Thirion et al., 2024). Our
HBP model provides individual functional parcellations for new
subjects using only 20 minutes of individual fMRI data. It out-
performs both a standard group map or individualized data-
driven models.
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