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Abstract
Mammalian perceptual development follows a largely
consistent progression along several dimensions. Acu-
ity and chromatic sensitivity improve over the first sev-
eral months of life after birth. Recent evidence suggests
that the progressions may have adaptive value by induc-
ing the formation of receptive field structures that enable
later resilience to spatial or chromatic degradations. Here
we examine whether the developmental changes in neu-
ral noise may follow a similar logic, i.e. does the tempo-
ral progression in neural noise lead to benefits in classi-
fication performance, especially under challenging con-
ditions? Our preliminary results in two distinct experi-
mental settings indicate that progressions from high net-
work noise to lower levels lead to phenomena similar to
those associated with stochastic resonance. These find-
ings not only provide a potential teleological account of
noise progressions in biological systems, they also sug-
gest useful training regimens for artificial vision systems
to improve their robustness.
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Introduction
The brain experiences two primary types of noise. The first
type is internal noise, which arises from the inherent variabil-
ity in cellular functions including fluctuations in membrane po-
tentials and variations in ion transmissions. The second type
is external noise, which originates from the variability in exter-
nal conditions that influence sensory input, such as changes
in the environment or imperfections in the sensory apparatus.
Our hypothesis is that internally developed noise could be a
source of emergence of mechanisms of the kind that might
potentially help neural systems to combat against the external
noise and help generalize over unseen stimuli.

Unlike linear systems, which are limited in their capacity to
model multi-faceted behavioral dynamics and are subject to
reduced information loss in presence of noise, non-linear sys-
tems such as brain has the ability to express multi-stability
and explore different functional network configurations pro-
vided that enough internal noise is generated (McIntosh et al.,
2010). Consequently, the concurrent existence of nonlinear-
ity and internal noise become essential for the spontaneous
emergence of exploratory dynamics even in the absence of
external stimulation/noise.

Despite internal noise being an intrinsic component of neu-
ral dynamics, in numerous practical scenarios, it is influ-
enced by external stimulation and noise. This interaction is
particularly noteworthy due to the emergent behaviors that

arise, also known as stochastic resonance (SR) in biologi-
cal systems. SR occurs when a nonlinear system’s signal-to-
noise ratio improves at moderate noise intensities. Moderate
noise helps the signal reach the threshold without dominat-
ing the original signal, eventually optimizing signal transmis-
sion (Gammaitoni, Hänggi, Jung, & Marchesoni, 1998). In our
study, we have found evidence to observe similar behavior in
neural networks as long as an appropriate noise level and pro-
gression is employed.

Biological Noise Progression
It is known that the brain noise changes with maturation and
aging, correlating with the stable behavior. However, the lit-
erature has conflicting arguments about the direction of noise
progression in biological systems. (Wang et al., 2019) has
found that spiking noise is much lower in the spike trains of in-
fant V2 neurons compared with those of adults, despite the re-
duced information density for V2 neurons in infants. However,
(Skoczenski & Norcia, 1998) argued that intrinsic neural noise
in neonates is approximately nine times higher than in adults,
suggesting high-to-low internal noise progression. Similar ob-
servations has been reported in ASD patients as well (Davis &
Plaisted-Grant, 2015; Dinstein, Heeger, & Behrmann, 2015).
Although these studies compare aggregate relative noise lev-
els, there seems to be no consensus on the way the noise is
quantified at the neuron-level.

Objective
In this work, we present some of the preliminary results re-
garding the time course of internal noise consolidation in neu-
ral networks. Objective is to explore two distinct ways of noise
injection in a progressive way to demonstrate the emergence
of biologically plausible mechanisms such as stochastic res-
onance and its positive effects on the generalization perfor-
mance under degraded and challenging stimuli.

Experiments and Discussions
We have assumed two kinds of internal noise: First one is
independent of the input stimuli, governed solely by intrinsic
mechanisms. The latter is dependent on the input through the
signal power available at the output of each neural unit. This
way we have quantified the amount of noise based on signal-
to-noise ratio (SNR) variations for each of the processed batch

Exp. Network Noise Type Biomimetic Datasets

1 AlexNet Nueron-lvl Resolution,
Noise

CIFAR10,
Fashion MNIST

2 AlexNet Batch-SNR Noise ImageNet

Table 1: A summary of the two experiments.



Figure 1: Test accuracy performance of joint bio-mimetic pro-
gressions for a specific set of parameter selections.

of input images. The architectures, noise types, biomimetic
progression details as well as datasets used are summarized
in Table 1. The input layer of the networks are adjusted to fit
the available image resolution.

Input-Independent Internal Noise

We have considered nine different combinations resulting
from the product space of resolution (α) and noise (β)
having three distinct progression directions, namely α,β ∈
{LH,HL,X} where L is low, H is high and X represents no
change, encoded in legends as “resαnoiseβ”. In our simula-
tions we have simply treated high resolution to be the clear
images and low noise and no noise cases to be equivalent.
The parameter FES denotes the standard deviation σR of
the Gaussian kernel used to generate low resolution images
whereas PLN is the σpl of the independent additive Gaussian
noise applied to penultimate layer of the network. Two phases
are defined covering 15 epochs each, where the learning rate
is fixed in the former and reduced in the latter.

We observed in our experiment for a selection of vari-
ables (σR = 9,σl p = 3.5 for Fashion MNIST, σl p = 1.5 for CI-
FAR10) that although low-to-high resolution training provides
robustness, training jointly with high-to-low noise progression
provided even better generalization performance. Moreover,
there seems to be a window of PL noise that helps networks
achieve the best accuracy (e.g. σpl = 4.5 for resLHnoiseHL
on Fashion MNIST and σpl = 3.5 for resXnoiseHL on CI-
FAR10) with/out noise consolidation. This seems to indicate a
similar mechanism of stochastic resonance phenomenon for
weakened (noisy) inputs. We also observe that the optimal
parameter selections depend on the input despite the internal
noise is independent, suggesting an input-dependent internal
noise model (Mišic, Mills, Taylor, & McIntosh, 2010) which has
been the motivation for the next experiment.

Input-Dependent Internal Noise

In this experiment, we introduced noise at every layer of
the model, as internal noise in the biological brain would be
present at every stage of visual processing. To ensure an
equal amount of noise injection across layers, the variance
of signals was dynamically measured within each batch, and
random noise sampled from a Gaussian distribution with 25%

Figure 2: Test accuracy performance as a function of Gaus-
sian noise (left) and salt-and-pepper noise (right). Four train-
ing regimes were compared.

of the variance was injected during the training. Four sce-
narios were compared: 1) ”clear,” involving training without
any noise across all epochs; 2) ”noise,” involving training with
noise across all epochs; 3) ”noise-to-clear,” where the first
phase was conducted with noise, and the second phase with-
out noise; and 4) ”clear-to-noise,” where the first phase was
conducted without noise, and the second with noise. Each
network was tested on inputs degraded by either Gaussian
noise or salt-and-pepper noise. We hypothesized that in-
jecting internal noise would enhance the networks’ ability to
generalize to conditions where input images were degraded,
and further, by comparing the two training regimes, ”clear-to-
noise” and ”noise-to-clear,” we might gain insight into the ben-
efit of noise progression direction regarding robustness.

Overall, our findings indicate that, although the effect was
not substantial, when the network was initially trained with
noise followed by clear conditions (”noise-to-clear”), it exhib-
ited better generalization performance than the opposite direc-
tion (Figure 2). This directionality suggests that initially start-
ing with noisy neural conditions may afford a better opportu-
nity for developing more robust networks, potentially hinting
at the early developmental progression of visual systems that
might occur in the biological brain.

Discussions

Our initial investigations have led to conclude that the utiliza-
tion of low spatial frequencies and internal noise, when ap-
plied progressively (high to low noise) during training, has
the potential to enhance classification robustness under de-
graded input. It is important to note that our training proto-
col does not incorporate degraded (e.g. noisy) images, thus
preventing the direct learning of degradation type and char-
acteristics. While the progression from high to low noise may
appear contrary to some of the existing studies that suggest
noise levels and physiological variability increasing with age
(McIntosh et al., 2010), our approach focuses on noise ma-
nipulation at the neuronal level. Furthermore, we have not
considered the dynamic network changes, widely recognized
within the neuroscience community as related to proliferation
and pruning processes, which are integral to architectural op-
timizations. These dynamic alterations could potentially be
modeled through techniques such as regularization and net-
work adaptation methods involving growth and reduction.
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