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Abstract
Relations between concepts are a crucial component of
human semantic knowledge. Behavioral studies have
shown that relations between concepts can be classified
into different types, but it is unclear how distinctions be-
tween semantic relations are reflected in the human brain.
Therefore we conducted a study to characterize brain
representations of semantic relations. Six participants
each answered over 1000 questions involving six seman-
tic relations while functional magnetic resonance imaging
(fMRI) was used to record BOLD responses. Then vox-
elwise encoding models were used to characterize the
selectivity for each semantic relation in each voxel and
participant separately. We find that the type of semantic
relation accurately predicts brain responses throughout
temporal, parietal, and prefrontal cortices. These results
suggest that hypothesized distinctions between semantic
relations are reflected in brain representations.
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Introduction
Human conceptual knowledge of objects involves relations be-
tween concepts. For example, knowledge of the object “bicy-
cle” involves relations to other concepts such as “wheel”, “ve-
hicle”, and “transportation”. Understanding relations between
concepts is thought to be a crucial component for human in-
telligence, allowing humans to draw inferences, make general-
izations, and perform analogical reasoning (Bejar et al., 1991;
Chaffin, 1988; Unger & Fisher, 2021). Instances of relations
between concepts can be classified into different types of se-
mantic relations (Bejar et al., 1991). For example, instances
of the part-whole relation connect objects to their constituent
components (e.g., a bicycle has wheels, a guitar has strings),
while instances of the hyponym-hypernym relation connect
objects to their taxonomic categories (e.g., a bicycle is a type
of vehicle, a guitar is a type of musical instrument). Behav-
ioral studies have shown that distinctions between semantic
relations are reflected in human similarity judgements (Chaf-
fin & Herrmann, 1984) and can explain human performance
on analogical reasoning tasks (Bejar et al., 1991). Semantic
relations have been incorporated in classical models of human
semantic memory (e.g., Norman & Rumelhart, 1975; Miller &
Fellbaum, 1991), and recent work has shown that these se-
mantic relations are also stored in the weights of artificial lan-
guage models (Bouraoui et al., 2019; Chen et al., 2021; Her-
nandez et al., 2024). However, it is unclear how semantic
relations are processed in the brain.

One possibility is that representations in the brain directly

reflect behaviorally derived distinctions between semantic re-
lations. In this case brain representations will generalize
across different instances of the same semantic relation, even
if each instance involves different objects. Alternatively, brain
representations could be organized according to other factors,
such as the objects involved in each relation.

A few functional neuroimaging studies have compared brain
responses to different semantic relations (Chiang et al., 2021;
Wang et al., 2021). However, in those studies different objects
were used for different semantic relations. Thus, it is unclear
whether observed differences in brain responses reflect dis-
tinctions between semantic relations, or distinctions between
the objects involved in each semantic relation.

Here we designed a study to investigate brain represen-
tations of different semantic relations. Six participants each
performed over 1000 trials of a relation-verification task while
brain responses were recorded with functional magnetic res-
onance imaging (fMRI). In each trial participants answered a
question about one of six semantic relations. Crucially, the
same set of 60 objects was used across all six semantic re-
lations. Voxelwise encoding model weights were used to de-
scribe selectivity for each semantic relation at the highest spa-
tial resolution available in the data (Figure 1). We find that the
estimated model weights accurately predict brain responses
to held-out trials throughout much of the temporal, parietal,
and prefrontal cortices. Our results suggest that throughout
much of the cerebral cortex brain representations generalize
across different instances of the same semantic relation.

Methods
fMRI was used to record blood-oxygen-level dependent
(BOLD) activity while six participants each performed over
1000 trials of a relation-verification task. In each trial, a triple
of words was shown one at a time via rapid serial visual pre-
sentation (RSVP; (Forster, 1970)). Each triple consisted of
a semantic relation (e.g., “hypernym”), an object (e.g, “bicy-
cle”), and a potentially related term (e.g, “vehicle”). In each
trial the participants pressed a button to indicate whether
the triple formed a valid instance of a semantic relation.
Half of the trials were valid instances of a semantic relation.
Trials included instances of six semantic relations: “hyper-
nym” (e.g., bicycle-vehicle), “location” (e.g., bicycle-garage),
“part” (e.g., bicycle-wheel), “symbol” (e.g., bicycle-freedom),
“purpose” (e.g., bicycle-transportation), and “material” (e.g.,
bicycle-aluminum). Trials also included instances of two non-
semantic relations: alphabetical ordering (e.g., bicycle-shirt)
and wordform match (e.g., bicycle-bicycle).

Voxelwise modeling (VM) was used to model BOLD re-
sponses (Wu et al., 2006; Naselaris et al., 2011). First, for



Figure 1: A. Experimental paradigm. Participants performed
an event-related relation processing experiment while fMRI
was used to record BOLD responses. Three example trials
are shown. In each trial three words were displayed: a se-
mantic relation (e.g., “part”), an object (e.g., “bicycle”), and
a potential completion term (e.g., “wheel”). The participant
was instructed to press a button after each triple to indicate
whether the triple forms a valid relation. B. Modeling frame-
work. Binary encoded stimulus features were constructed to
describe the semantic relation of each trial. VM was used
to estimate model weights that describe how the type of se-
mantic relation modulates BOLD responses in each voxel. A
held-out test set was used to evaluate prediction accuracy.

each semantic relation we constructed a binary feature space
that reflects when participants performed trials for that seman-
tic relation. Then we used banded ridge regression to esti-
mate model weights that map from the semantic relation fea-
ture spaces to BOLD responses (Nunez-Elizalde et al., 2019;
Dupré la Tour et al., 2022). Nuisance feature spaces were
included to account for the effect of non-semantic relations,
the lexical semantics of each presented word, response times,
and visual and motor features. Model weights were estimated
separately for each voxel and participant. To evaluate model
generalization, estimated model weights were used to predict
BOLD responses to a held-out test set that contained triples
not used for model estimation. Prediction accuracy was com-
puted as the coefficient of determination (R2) between pre-
dicted and true BOLD responses to the held-out test set. A
permutation test with 1000 iterations was used to compute the
statistical significance of prediction accuracy. In each iteration
the timecourse of true BOLD responses in the held-out test
dataset was shuffled in blocks of 10 TRs, and then prediction
accuracy was computed between the predicted and shuffled
BOLD responses. The permuted prediction accuracies were
used as a null distribution to obtain the p-value of prediction
accuracy for each voxel separately. The product measure was
used to decompose the prediction accuracy of each voxel into

Figure 2: Prediction accuracy of the semantic relation model
weights. Group-level results are shown on the flattened sur-
face of the fsAverage brain. Vertex color indicates prediction
accuracy. Vertices that were significantly predicted in less
than one third of the participants are shown in black. Predic-
tion accuracy is high throughout temporal, parietal, and pre-
frontal cortices. Thus, brain representations generalize across
different instances of each semantic relation.

the contribution of each feature space (Hoffman, 1960; Pratt,
1987; Dupré la Tour et al., 2022; St-Yves & Naselaris, 2018;
Chen et al., 2024). To summarize prediction accuracy across
the group, results for each participant were projected to a stan-
dard template space (fsAverage; (Fischl et al., 1999)) and then
the mean over participants was computed for each vertex. To
ensure generalization to new participants, data for two partici-
pants were not analyzed until the entire experiment and model
estimation pipeline was finalized.

Results
To determine whether brain representations generalize across
different instances of each same semantic relation, we test
how well the semantic relation feature spaces can predict
brain responses to held-out instances of each semantic rela-
tion. Figure 2 shows the group-level prediction accuracy of the
semantic relation feature spaces. Vertices throughout bilateral
temporal, parietal, and prefrontal cortices are significantly well
predicted (p < .05 after false discovery rate correction; (Ben-
jamini & Hochberg, 1995)). Semantic relation feature spaces
accurately predict brain responses to held-out trials. Thus,
distinctions between the six semantic relations are reflected
in brain representations.

Conclusion
Here we compared brain responses to different semantic rela-
tions. The type of semantic relation accurately predicted brain
responses throughout much of the semantic system. Thus,
brain representations generalize across different instances of
the same semantic relation. This result suggests that seman-
tic processing in the brain is organized by the type of seman-
tic relation, rather than merely the specific objects involved in
each relation. We suggest that separating representations of
semantic relations from the specific concepts involved in each
instance of a relation enables flexible extension of semantic
relation processing to new objects.
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