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Abstract

Non-human animals and humans are able to learn policies
rapidly with few exposures. However, the earliest moments
of learning are difficult to capture and model and are thus
understudied. In part, this is due to high levels of variability
in learning trajectory across individuals. Here we train ado-
lescent mice in an odor-based two-alternative forced choice
(2AFC) task and then extend a recently developed latent state
cognitive modeling framework to fit our behavioral data. This
framework dynamically estimates decision policies on a trial-
by-trial basis, capturing an animal’s likelihood to remain in ei-
ther of two latent decision states: reinforcement learning (RL)
and biased for some action. We found that our hybrid model
was a better fit than the RL policy alone, and that it success-
fully explained individual learning trajectories in a way that the
RL model could not. All together, our task and model provide
novel insight into the earliest moments of learning.

Keywords: decision-making; hidden Markov model; mice be-
havior; learning

Introduction

Human and non-human animals learn and adapt to changes
in their environment without overtraining to specific situations.
However, despite their critical relevance, the earliest moments
of instrumental learning are excluded and rarely studied or
modeled in neuroscience, perhaps due to unstructured vari-
ability in an animal’s performance. Here, we study early learn-
ing in developing mice in an odor-based variant of the com-
monly used 2AFC task (Figure 1A). Within their first odor
learning session, habituated mice show odor stimulus-action
learning. But which strategies are employed to drive learn-
ing? For example, it is possible that animals initially ignore
odor cues and instead use place (biased) strategies before
understanding task structure and showing an increase in per-
formance. Likewise, this shift towards engaged learning could
be transient and precede animals transitioning towards a bi-
ased strategy within the same session (e.g., if the animal be-
comes demotivated after reaching satiation).

Recently, researchers have used increasingly complex
models to better capture an array of possible strategies an
animal may use to solve decision-making tasks. Hidden
Markov models (HMM) that use latent states to describe hy-
brid policies outperform fully observable models (Ashwood et
al., 2022; Bolkan et al., 2022). However, existing HMM ap-
proaches are constrained to descriptive policies, such as gen-
eralized linear models (Ashwood et al., 2022), and cannot
be trivially extended to policies that describe generative pro-
cesses, such as reinforcement learning. To develop a mod-
eling framework that can capture both latent learning strate-
gies and processes, we extend our recently developed HMM-
based modeling framework (Li, Shi, Li, & Collins, 2024) to dy-
namically estimate decision policies underlying behavior on a
trial-by-trial basis (Figure 1B).
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Figure 1: A: Behavioral task schematic. Animals self-initiate a
trial by poking into the center port, releasing one of two odors.
Following ‘go’ lights, animals make a choice of two lateral side
ports and receive a water reward if correct. B: Structure of the
hybrid HMM combining the RL policy with a biased policy for
some action.

Methods

Task

Naive, water-restricted C57B/L6 male mice (n=31) at postna-
tal day (P) 27 were first habituated to the operant chambers
and taught to receive 2µL water rewards from lateral nosepoke
ports and to initiate trials via nosepoke to the central port (see
Figure 1 A). Following this brief period, animals were exposed
to two odors, odor A (cinnamon) & B (vanilla) which were pre-
sented pseudo-randomly and deterministically predicted wa-
ter reward on either the left or right ports, respectively.

Modeling

We evaluated an RL model against a hybrid model between
the same RL policy and a biased policy (Figure 1). On trial t,
the RL model samples an action according to πt , a softmax
policy over the action values in the current state st :

πt(st) = softmax
(
β · (Qt(st)+ stickiness)

)
,

where β is the inverse temperature parameter. “Stickiness” is
a set of parameters to model sticking to the same action con-
ditioned on whether the state has changed from the previous
state and whether the previous action was rewarded. When
the chosen action at is rewarded, the action value is updated:

Qt+1(st ,at)← Qt(st ,at)+α+

(
1−Qt(st ,at)

)
,
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Figure 2: A: Mice and model choice accuracy behavior over quartiles of early learning (single session). B: Model comparison by
AIC favors the hybrid model. C: Example individual animal and model learning curves. p(Biased) = 1 - p(RL) is the estimated
probability of occupying the “Biased” latent state in the hybrid model.

where α+ is the learning rate parameter. The biased policy is
a heuristic defined by a “bias” parameter between 0 and 1:

πt(left|st) = bias.

The hybrid model uses an HMM to construct a mixture policy
between the RL and biased policies. Its likelihood is estimated
by extending the dynamic noise estimation framework (Li et
al., 2024). All models were fitted using maximum likelihood
estimation, and we verified that models and parameters are
identifiable (Wilson & Collins, 2019).

Results
On average, adolescent animals learned to choose the cor-
rect actions associated with odors A & B above chance within
the first session (Figure 2A). The hybrid model was a better fit
than the RL model according to the Akaike information crite-
rion (AIC; Figure 2B). At the group level, the hybrid model cor-
rectly captured decision accuracy across learning (Figure 2A);
for individual animals, it successfully explained highly vari-
able trajectories in early learning sessions using the estimated
probability of occupying each latent policy state trial-by-trial

(e.g., p(Biased); Figures 1B, 2C). As expected, individual an-
imals displayed large differences in estimated latent state oc-
cupancy trajectories, perhaps driven by behavioral differences
in strategy or bias. Together, these results suggest that the
addition of the hybrid mechanism can account for variance in
choice behavior that the RL model alone fails to capture.

Discussion

For decades, those using rodent models to study learning
have primarily analyzed trained, or stable, behavior, bypass-
ing a moment of learning that could be key to forming and
testing novel hypotheses about the neuroscience of how an-
imals learn. Here we present a novel hybrid model applied
to the earliest forms of instrumental learning, that allows task
acquisition to be studied empirically. In addition to studying
C57B/L6 adolescents, we are currently applying our task and
model to adult mice and mice with mutations to autism risk
genes to examine differences in learning trajectories that may
indicate broader neural circuitry changes.
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