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Abstract
We report preliminary results from the project to system-
atically analyze the relationship between language vox-
els and voxels that are well-predicted by a GPT2-based
encoding model (EM). Language voxels are defined as
those that respond significantly more to sentences than
non-words, as identified via an auditory language local-
izer task. We find that ∼half of the language voxels are
well-predicted by the EM, although >90% of well-encoded
voxels are not language voxels. Language voxels, on
average, have significantly better EM performance than
non-language voxels, both among all cortical voxels and
among well-predicted voxels. Finally, we project the EM
voxelwise weights into a 3-PC subspace and find the the
language voxels tend to have a positive bias along each
PC. Consequently, we find a separating plane in the 3-PC
space that separates language and non-language voxels
predicted by an EM with a >75% accuracy both within-
subjects and across-subjects, suggesting that language
models have a clearly identifiable EM signature.
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Introduction
Compelling neural evidence points to the existence of a spe-
cialized language network focused on language processing
and associated tasks (Fedorenko et al., 2024). However,
language-based encoding models (EM) can predict neural
activity to linguistic stimuli not only in the language network
(Schrimpf et al., 2021), but also in many other cortical re-
gions, with many voxels exhibiting semantically selective re-
sponses (Huth et al., 2016). Here, we bridge these two lines of
evidence by investigating the relationship between language-
responsive voxels and voxels predicted by a language-based
encoding model.

Methods
We examined the relationship between language-responsive
voxels (hereafter, language voxels) and voxels that are sig-
nificantly predicted by a GPT2-based EM (hereafter, well-
predicted voxels) within two subjects, UTS03 and UTS08
(LeBel et al., 2023).

Language Voxels Language voxels are defined using the
fMRI data collected on an auditory language localizer task
(Scott et al., 2017), by contrasting voxel responses to short
story excerpts and to their acoustically degraded versions.
Any cortical voxel that passed a one-sided t-test with a signif-
icance threshold of p <= 0.001 (uncorrected) was classified
as a language voxel.

Well-Predicted Voxels The EMs were built using fMRI data
collected during a passive naturalistic story listening task on
27 stories, 26 of which were used to train and cross-validate
the EMs while 1 held-out story was used to report the test-
set prediction performance. To determine the (statistically sig-
nificant) well-predicted voxels, we also fit 26 EMs by leaving

one of the train stories out. Then, the EM performance for
held-out stories across all 26 EMs was measured as the cor-
relation (r) between the predicted and actual response time-
series. Statistical significance of r was measured using a
blockwise permutations test with correction for multiple com-
parisons (q < 0.001) (Jain and Huth, in prep; Vo et al., 2023).

Deriving the principal components of EM weights Fol-
lowing the approach in Huth et al. (2016), we characterize
semantic selectivity across cortex by decomposing each sub-
ject’s EM weights into principal components (PCs). We inde-
pendently de-mean the weights of every significantly predicted
voxel in the subject and then apply principal components anal-
ysis. The first three PCs explain a significant amount of vari-
ance across the EM weights (bootstrap test; p < 0.05) and
are highly correlated between subjects.

To reduce the influence of low-level features on the PC
space, we filter out voxels that are also significantly predicted
by a low-level EM (features include: word rate, phoneme rate,
and phonemic content) (Jain and Huth, in prep; Vo et al.,
2023). The PC analysis is therefore conducted on the well-
predicted voxels not also predicted by the low-level EM.

Classifying language vs. non-language voxels Finally,
we trained a support-vector-machine (SVM) to classify well-
encoded voxels as either language or non-language using
their 3-PC space coordinates. The model was trained with
a linear kernel and cost factor of 1. To compensate for the im-
balance of language to non-language voxels, we up-sampled
the language voxels before splitting the data into training and
testing sets. 85% of the data was used for training.

Results

Well-predicted language voxels constitute a minority of
all well-predicted voxels We found partial overlap between
the language voxels and the well-predicted voxels (Figure 1A).
For UTS03 and UTS08, the percentage of language voxels
that are well-predicted by the EM is 62%and 51% respec-
tively. However, the percentage of well-predicted voxels that
are also language-responsive is only 6.7% and 5.5% respec-
tively, meaning that most well-predicted voxels are not identi-
fied with the language localizer contrast. As shown in Figure
1B, voxels that are both language and well-predicted are lo-
cated in canonical language areas; language voxels that are
not well-predicted are mostly located outside canonical lan-
guage areas and might be driven by low-level artifacts; and
well-predicted voxels that are not language mainly occupy
large swaths of the associative cortex.

EM predictivity is higher for language voxels than for non-
language voxels We then asked whether language vox-
els have better EM predictivity than non-language voxels,
both among all cortical voxels (Figure 1C) and among well-
predicted voxels specifically (Figure 1D). Permutation tests
showed significantly higher predictivity for language voxels
than for non-language voxels, both among all voxels (UTS03:
language rmean = 0.24, non-language rmean = 0.11, p =



Figure 1: A) Venn diagrams demonstrating the relative numbers of language voxels and well-predicted voxels for each subject.
B) Subject-level brain maps showing the locations of the language voxels (blue), the well-predicted voxels (red), and their overlap
(white). C) EM predictivity histograms for language voxels vs non-language voxels for all voxels. D) EM predictivity histograms
of language voxels vs non-language voxels for well-predicted voxels only. In all 4 histograms, language voxels have significantly
better predictivity than non-language voxels.

0.002; UTS08: language rmean = 0.15, non-language rmean =
0.05, p = 0.002) and among the set of well-predicted voxels
(UTS03: language rmean = 0.33, non-language rmean = 0.24,
p = 0.002; UTS08: language rmean = 0.15, non-language
rmean = 0.19, p= 0.002). This indicates that, even though lan-
guage voxels constitute only a small portion of well-encoded
voxels, they stand out in terms of their EM predictivity.

Language voxels occupy a specific region in the PC
space derived from EM weights Finally, we tested whether
the language well-predicted voxels can be differentiated from
non-language well-predicted voxels on the basis of EM weight
patterns. To do so, for each subject, we projected all well-
encoded voxels into the 3-dimensional PC space (see meth-
ods). Permutation tests showed that the language voxels have
a significant positive bias along each of the 3 PCs.

An SVM trained to classify well-encoded voxels as lan-
guage vs. non-language (Figure 2) achieved high perfor-
mance (UTS03: accuracy 76.2%, F1 73.82%; UTS08: accu-
racy 80.4%, F1 79.7%). Moreover, each SVM could success-
fully generalize to the other subject (UTS03→UTS08: accu-
racy 80.0%, F1 79.3%; UTS08→UTS03: accuracy 76.0%,
F1 73.02%). This result shows a high degree of consistency
in the language voxels’ location across subjects’ PC spaces.

Conclusion and Future work

We show that GPT2-based EM predictivity is significantly
higher for language voxels than for non-language voxels, even
when only considering the voxels that are well-predicted by
the EM. We also show that language voxels occupy a spe-
cific subspace of the EM weight PC-space, indicating that they
have an identifiable EM signature. The goal of future work is
to generalize these results to additional subjects and develop
analysis tools to interpret the features that lead the EM to dif-
ferentially represent language and non-language voxels.

Figure 2: The scatter plots of well-predicted voxels in the 3PC
space for each subject, along with the separating planes de-
rived from subject-level SVM classifiers.
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