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Abstract

Decision making and learning in naturalistic environ-
ments involve choice options with multiple features,
whereas usually only a few features and/or their conjunc-
tions are predictive of their associated reward outcomes.
It has been shown that humans deploy attention to se-
lectively learn about the predictive values of features and
feature conjunctions and generalize those values to sim-
ilar stimuli/objects. This behavior can be captured by re-
inforcement learning models with explicit value represen-
tations. But how are such representations learned and
used for decision making in neural circuits with mixed
selectivity, and how does attention modulate these pro-
cesses? To address these questions, we trained multi-
area recurrent neural networks endowed with reward-
dependent Hebbian plasticity on a multidimensional re-
ward learning task. After training the networks to per-
form the task across diverse reward schedules, we tested
them on the reward schedule used in a recent human
study. The networks exhibited similar attentional biases
as those observed experimentally. Despite their distinct
topographies, we found that different networks shared
an interpretable latent circuit organization that resembled
the architecture of attractor network models. Specifically,
distributed but orthogonal subspaces were used to en-
code and communicate information about different fea-
tures and conjunctions within and across network areas,
enabling the simultaneous learning of feature and con-
junction values through reward-dependent Hebbian learn-
ing. Finally, we discuss how this structure gives rise
to value-based selective attention, providing insight into
how the underlying mechanisms can be validated in fu-
ture experiments.
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Introduction

Reward learning in the real world requires learning the val-
ues of objects with multiple features from sparse and noisy
feedback. The number of objects to learn about increases
exponentially as the number of features grows, a problem re-
ferred to as the curse of dimensionality (Sutton & Barto, 2018).
Previous studies showed that when faced with such chal-
lenges, humans deploy attention to prioritize learning about
the values of reward-predictive features and conjunctions of
features, and then combine those values to approximate the
value of each object. While this behavior can be explained
by reinforcement learning models (Farashahi & Soltani, 2021;
M. C. Wang & Soltani, 2023; Leong, Radulescu, Daniel, De-
Woskin, & Niv, 2017), it is unclear how it can be imple-
mented by neural circuits with mixed selectivity using biolog-
ically plausible learning rules. To address this question, we
trained multi-area recurrent neural networks endowed with
reward-dependent Hebbian plasticity on a multidimensional
reward learning task (Farashahi & Soltani, 2021). We ana-

lyzed the behavior of these networks to verify that they exhib-
ited the same attentional biases as human participants. To
further identify the mechanisms underlying this behavior, we
utilized dimensionality reduction methods to reduce the high-
dimensional networks into low-dimensional interpretable cir-
cuits (Barbosa et al., 2023; Haxby, Guntupalli, Nastase, & Fei-
long, 2020; Langdon & Engel, 2022; Dubreuil, Valente, Beiran,
Mastrogiuseppe, & Ostojic, 2022).

Methods

The multidimensional reward learning task involved learning
about the values (reward probabilities) associated with multi-
featured stimuli through probabilistic binary reward feedback.
For the current study, each stimulus consisted of three feature
dimensions where each feature dimension had three possi-
ble values, leading to 27 stimuli (objects) in total. We trained
eight instances of two-area excitatory-inhibitory recurrent neu-
ral networks (Kleinman, Chandrasekaran, & Kao, 2021) (Fig.
1A). In each trial, the network’s first area received inputs about
the two available choice options. The probability of choosing
each option was read out from the second area. The second
area then received feedback about the chosen option. Finally,
a reward outcome was delivered, and recurrent weights within
each network were updated according to reward-dependent
Hebbian plasticity (Farashahi & Soltani, 2021) to accumulate
value information across trials. The network’s dynamics are
described by the equations below. The state of each unit x;
is a leaky integration of external input z; and recurrent input.
Each recurrent connection has a fixed component Wy and
a plastic component W/, which evolved through a Hebbian
learning rule modulated by the reward r;, with learning rates
A. & and &, are white noise.
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To ensure that each network learned a general strategy for
solving the task, we trained them on a large set of random
reward schedules (J. X. Wang et al., 2018). We then tested
them on a reward schedule utilized in previous human behav-
ioral studies, which was designed such that an agent could
learn a good approximation to the stimulus values by learn-
ing and integrating the values of one feature dimension (the
informative feature) and that of the conjunction of the two
other non-informative features (the informative conjunction)
(Farashahi & Soltani, 2021; M. C. Wang & Soltani, 2023).

Results & Discussions

Task-optimized plastic recurrent neural networks
replicate attentional biases in human behavior

When tested on a reward schedule that was used in prior work
(Farashahi & Soltani, 2021; M. C. Wang & Soltani, 2023),
the model’'s performance matched that of human participants.
Using similar methods as in a previous study (M. C. Wang



‘ Excitatory
—— Inhibitory ‘ 0.81 — FO
Input Units Modulatory >
ol =
Feature{ Output Units 2
C =06
S o
Comuncuun{ H o
. 5 o4
: o
s} 2 o ook
Object 0.2 © =
) s

-1.0 -0.5 0.0 0.5 1.0
Log odd of reward

Cc

- et oL

Fi FniFnz € CnaiCh2 O
Choice autocorrelation

Regression weights

o o
SR

[ 3

i

|3

+

[

Fi Fn1Fnz € CvaiCh2 O
Win-stav lose-switch

Figure 1: (A) Design of recurrent neural networks with reward-
dependent Hebbian plasticity. (B) Choice behavior of the net-
work as a function of the values of the informative feature,
informative conjunction, and the stimulus object. (C) Logis-
tic regression analysis of win-stay lose-switch and choice-
autocorrelation. F;, C; denote the informative feature and
conjunction. Fyi, Fn2, Cn1, Cy2 denote the non-informative
features and conjunctions. O denotes the stimulus (object).
**: p<0.01,**: p <0.001.

& Soltani, 2023), we found that the networks used weighted
combinations of the values of the informative feature and con-
junction to inform their decision making (Fig. 1B). Further-
more, these analyses revealed attentional biases in learning
similar to those observed in human participants who preferen-
tially associated reward with the informative feature and con-
junction (Fig. 1C).

Latent circuits for multidimensional reward learning

Although the trained networks demonstrated behavioral signa-
tures of attention that resembled those of human participants,
different networks exhibited very different and heterogeneous
connectivity patterns. To uncover a shared interpretable cir-
cuit motif across these networks, we applied demixed prin-
cipal component analysis to the weights of the network that
were fixed across trials (input weights, output weights, choice
feedback weights) (Kobak et al., 2016). This provided us with
the network-specific subspaces for encoding different stimulus
dimensions. For all networks, these subspaces were nearly
orthogonal to each other (Fig. 2A). Using these subspaces
as a basis set, we performed a change of basis transforma-
tion on the within- and between-area connectivity matrices of
each network in order to reduce the high-dimensional net-
works to low-dimensional latent circuits (Langdon & Engel,
2022). Applying this transformation to the within-area recur-
rent weights, the result showed a consistent pattern of nearly
diagonal matrices with high positive diagonal values (Fig. 2B),
reflecting within-subspace recurrent excitation, as well as low
off-diagonal values, reflecting low interference between sub-
spaces (Dubreuil et al., 2022). Applying this transformation

to the between-area connection weights, we found separate
communication subspaces that selectively relayed information
about different stimulus dimensions across areas (Fig. 2C)
(Barbosa et al., 2023). This orthogonal organization further
allowed the population representations of previously chosen
stimuli to be accurately encoded and retrieved through Heb-
bian learning (Fig. 2D).

In summary, we found that an interpretable circuit that re-
sembles attractor network models of decision making and
learning is embedded in the high-dimensional connectivity of
the RNN. Interestingly, value-based selective attention has
been demonstrated in attractor networks (Pannunzi et al.,
2012). This explains the behavior of RNNs used in the cur-
rent study and provides a plausible mechanistic explanation
for value-based attentional biases in human reward learning.
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Figure 2: Task-optimized neural networks share a common
latent circuit organization. (A) Overlap between stimulus fea-
ture, conjunction, and object encoding subspaces. (B) Within-
area connectivity after a change of basis transformation. (C)
Between-area connectivity after a change of basis transfor-
mation. (D) Overlap between the retrieved pattern of activity
and the true pattern (Same) encoded through Hebbian learn-
ing, compared to false (Diff I, Diff O, Diff 10) patterns. All heat
maps show averages across networks. All histograms show
the distribution of individual values. ***: p < 0.001.
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