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Abstract

Like many other animals, humans direct their gaze to
selectively sample the visual space based on task de-
mands. Visual search, the process of locating a spe-
cific item among several visually presented objects, is a
key paradigm in studying visual attention. While much is
known about the brain networks underlying visual search,
our understanding of the neural computations driving
this behavior is limited, leading to challenges in simu-
lating such behavior in-silico. To address this gap, we
trained an image-computable artificial neural network to
perform naturalistic visual search. After training, the
model demonstrated strong generalization in search per-
formance to novel object categories while exhibiting high
behavioral consistency with human subjects. Further
analysis of the model’s population activity revealed an
egocentric representation of the priority map, akin to
those described in macaques, that persisted in time and
was updated with each saccade alongside encoding of
the cued object category in a separate subspace. Our
model provides a computational framework for further
studying the neural circuits underlying visual search in
the primate’s fronto-parietal cortical network.
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Methods

Behavioral task. We followed a standard search paradigm
from Zhang et al. (2018) (Fig. 1A) that involved viewing a
target object (cue) followed by a search array in which one of
the objects categorically matched the target.

Model architecture. The model consists of A) a retinal trans-
formation simulating the eccentricity-dependent visual acuity
(Mnih, Heess, Graves, & Kavukcuoglu, 2014). B) the reti-
nal transformed image is processed by a convolutional neu-
ral network (CNN), simulating the neural processes in the
ventral visual pathway (Yamins et al., 2014; Khaligh-Razavi
& Kriegeskorte, 2014). The CNN model (Tan & Le, 2020)
was trained to perform visual categorization from retinal trans-
formed Imagenet images (Deng et al., 2009). The visual

representation is combined with the fixation location in the
glimpse network as in Mnih et al. (2014); Ba, Mnih, and
Kavukcuoglu (2015). C) The CNN output along with gaze lo-
cation are fed into a causal transformer that produces the next
fixation location. These steps are repeated for as many as 6
fixations in each trial (Fig. 1B).

Model training. The model was trained to do the visual
search task following a 2-stage training paradigm inspired
by prior work on saccade-augmented visual categorization
(Elsayed, Kornblith, & Le, 2019). 1) the model is trained to pre-
dict the target location at each step given a sequence of ran-
dom fixations on the array. The transformer and linear read-
out parameters are learned using backpropagation by mini-
mizing the Cross-Entropy loss between the last output loca-
tion and the ground-truth target location (Fig 1B). 2) we fix the
transformer’s parameters and train a new MLP policy using
reinforcement learning to produce the next fixation given the
current hidden state of the transformer at every step while in-
centivized to reach the target as early as it can. Combining
supervised learning with reinforcement learning substantially
improved the training time of our model compared to other

tested alternatives.
Results

Visual search ANN replicates the human saccadic behav-
ior. We behaviorally tested the model on the Natural Object
Search Task dataset (Zhang et al., 2018). The model’s perfor-
mance curves followed a similar trend as those of human sub-
jects (Fig 2A). Its scanpaths (spatiotemporal sequence of fix-
ations made during visual search) were highly consistent with
those of humans, surpassing the current best model of visual
search, IVSN (Zhang et al., 2018) (Fig 2B). Despite this, the
model consistently outperformed human subjects in absolute
hit rate possibly due to its extensive training on the search tri-
als generated from the same limited set of objects as the test
trials. To test this, we further evaluated the model on trials
generated from novel object categories (not in the Imagenet)
(Fig 2C). The model’s behavior was highly consistent with that
of humans indicated by similar performance curves (Fig 2D)
and high scanpath consistency (Fig 2E). Scanpath similar-
ity score was measured using ScanMatch (Cristino, Mathdt,
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Figure 1: A. Example Search Trial. Example cue, search array
(SA), and retinal views in different steps. B. Model Architec-
ture and Training. The model consists of a retinal transforma-
tion (RT), a vision module (a pre-trained CNN), and a fixation
generation module (causal transformer + MLP readout). First,
the backbone of the fixation generation module (causal trans-
former) and a linear readout are trained to output the target
location using backpropagation. Second, transformer param-
eters are fixed and an MLP component is trained using re-
inforcement learning to generate the next fixation location (f)
from the latest transformer’s output token.

Theeuwes, & Gilchrist, 2010) as in Zhang et al. (2018).

An egocentric representation of priority map in the
model’s latent space. We investigated whether the model
encodes a priority map similar to that previously observed in
primates (N. Bichot, Heard, DeGennaro, & Desimone, 2015;
Bisley & Mirpour, 2019; Machner et al., 2020; Colby & Gold-
berg, 1999; Bisley & Mirpour, 2019). To do this we fitted
regression models to predict the cue similarity in both ego-
centric (relative to gaze location) and allocentric (relative to
image) frameworks. Cue similarities with each fixated input
were computed by comparing (dot product) the center posi-
tion of the CNN embedding of the cue and 1) that of each
fixation for the egocentric map, resulting in a 3x3 priority map
(Fig. 3B) and 2) that from fixations on each of the objects on
the search array, resulting in a 1x6 priority map (Fig. 3C).

The egocentric priority map was much stronger repre-
sented in the model’s latent space versus the allocentric one
(Fig 3D). Moreover, we also considered the possibility that the
allocentric priority map may have been encoded with an inhibi-
tion of return (IOR) mechanism. To test this, we repeated the
decoding analyses of the allocentric priority map with two ad-
justments: 1) we considered IOR when generating the ground
truth cue similarities in the allocentric priority map (i.e. ze-
roed out the priority of the locations visited in the past n steps
for n-IOR) and; 2) to prevent IOR from artificially boosting our
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Figure 2: A. Cumulative Performance as a function of fixation
steps. B. Image-by-image consistency in the spatiotemporal
pattern of fixation sequences.

decoding results, we only considered the trials where each
decoded location was not visited in the last n steps. From
these analyses, we did not find any evidence of an allocentric
priority map with IOR in the model’s latent space (Fig 3D).

We further tested whether the the model’s egocentric pri-
ority map was consistently encoded in the same subspace
across time, by validating priority map decoders fitted on each
time step on other time steps. The model’s egocentric repre-
sentation of the priority map was stable across time steps ex-
cept for the first one (generalization accuracy across locations:
for time steps after the first one: mean=0.77, standard devia-
tion (SD)=0.05; for the first time step: mean=0.28, SD=0.22).
Moreover, the model’s priority map was continuously encoded
across the model's latent space, i.e. priorities at nearby lo-
cations in the visual space were encoded along more aligned
axes in the model’s latent space (Fig 3E-G).

Finally, we found that the cue category was also consis-
tently represented in the same subspace across time points,
as indicated by its high decodability across time (mean=0.97,
and SD=0.01) and high generalizability of the decoding across
time steps (mean=0.93, SD=0.07).

Discussion

We showed that an image-computable neural network model
trained to perform the visual search task closely replicates hu-
mans’ behavioral response patterns during this task while re-
lying on hidden state representations closely resembling prior
observations from the primate’s fronto-parietal cortical net-
work. We believe this model provides an opportunity for the
community to test hypotheses about the neural computations
underlying visual search, e.g. the fixation selection strategy
as well as predicting neural responses of primate brain areas
like the Ventral pre-arcuate (VPA), Lateral intraparietal cortex
(LIP), and Frontal eye fields (FEF) during visual search.
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Figure 3: A. Schematic of egocentric vs. allocentric prior-
ity map. B. An example egocentric priority map. The cen-
ter position of the CNN embedding of the center-fixated cue
was compared (dot product) with that of the gaze-location-
fixated search array, giving a cue-similarity map indicating the
goal-driven priority of each location in the egocentric refer-
ence frame. C. An example allocentric priority map. The cen-
ter position of the CNN embedding of the center-fixated cue
was compared (dot product) with that from fixations on each
object on the search array, resulting in a 1x6 priority map.
D. The egocentric priority map and not the allocentric priority
map was stably decodable (Ridge regression) from the trans-
former’s hidden space. The mean validation accuracy of the
priority decoding averaged over all locations on the priority
map across time is shown. E. Schematic of the two possi-
ble geometries of the priority map representation. F. Priority
decoders’ axes for nearby locations in the visual space are
more aligned in the model’s hidden space. G. The normalized
generalization accuracy (generalization accuracy across the
locations normalized by the maximum over the visual space)
decreases with increasing distance in the space, indicating a
continuous topographical representation of the priority map in
the model’s hidden space. Colors as in F.
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