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Abstract

Recent work has revealed the high-dimensional struc-
ture of visual cortex responses to natural images in both
mice and humans, where stimulus-related variance is dis-
tributed as a power law over thousands of latent dimen-
sions. Here, we characterize the covariance spectra of
two datasets containing V1 responses to thousands of vi-
sual stimuli measured at two very different scales: mouse
calcium imaging and human fMRI. We find that the power-
law exponent o characterizing the spectral decay varies
substantially across experiments, contradicting previous
claims of universality and optimality in the power law ex-
ponents of visual cortex. However, we also discover a
striking pattern where variance along a latent dimension
is directly related to its spatial scale — a measure of how
strongly neighboring neurons co-activate. When viewed
through this lens, the spectra of the mouse and human
neural activations show striking similarities, suggesting
that both visual systems represent natural images in sim-
ilar ways. Our results demonstrate that analyzing the spa-
tial scale of latent modes of variation might be a more
fundamental way to quantify the covariance structure of
neural representations.
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Introduction

Visual cortex responses to natural images are often re-
ported to be low-dimensional, where all the reliable vari-
ance lies along a small handful of dimensions correspond-
ing to interpretable features. However, recent studies of
mouse and human visual cortex have demonstrated that neu-
ral representations of visual stimuli have high-dimensional la-
tent structure, with reliable stimulus-related variance span-
ning all latent dimensions and limited only by dataset size
(Stringer, Pachitariu, Steinmetz, Carandini, & Harris, 2019;
Gauthaman, Ménard, & Bonner, 2023). Specifically, the co-
variance spectrum of neural responses follows a power law
where variance o rank®.

The key metric characterizing this spectral decay is the
power-law exponent (o) which controls the balance between
expressivity and smoothness of the neural representation
(Stringer et al., 2019). Early experimental and theoretical
results argued that mouse visual cortex operates in a criti-
cal regime where o attains its optimal value of —1 (Stringer
et al.,, 2019), and similar claims have been made about the
power-law exponents in the internal representations of neural
networks trained for visual tasks (Ghosh, Mondal, Agrawal,
& Richards, 2022; Kong, Margalit, Gardner, & Norcia, 2022;
Nassar, Sokol, Chung, Harris, & Park, 2020). However, more
recent studies have reported a range of o values across dif-
ferent model organisms and computational models (Wang et
al., 2023; Manley et al., 2024; Pospisil & Pillow, 2024; Gerum,
Pirlot, Fyshe, & Zylberberg, 2022).

Our contribution Here, we analyze previously published
mouse calcium imaging data (Stringer et al., 2019) as well
as a large-scale human fMRI dataset (Allen et al., 2021) con-
taining primary visual cortex responses to thousands of nat-
ural images. We find that o varies significantly between the
mouse and human datasets. Since neighboring neurons tend
to co-activate, we reasoned that the latent modes of neural
variation are likely to exhibit topographic organization, and,
thus, we analyzed their spatial structure. Strikingly, when the
stimulus-related variance along each latent dimension is plot-
ted against its spatial scale instead of its rank, we discover
similar power-law exponents for both the mouse and human
datasets, suggesting that both neural systems encode visual
information in the same way across an immense range of spa-
tial scales ranging from single neurons to voxels.

Methods

Large-scale datasets We analyze fMRI responses in the
primary visual cortex (V1) of 8 participants from the Natu-
ral Scenes dataset who performed a continuous recognition
task on 10,000 natural scene stimuli (Allen et al., 2021). Ad-
ditionally, we analyze a mouse calcium imaging dataset also
containing V1 responses to 2,800 natural images from 7 mice
(Stringer et al., 2019).

Computing covariance spectra Cross-decomposition is a
generalization of principal component analysis (PCA) that es-
timates cross-validated covariance spectra, measuring only
stimulus-related variance that generalizes across different im-
age presentations’ (Fig. 1A). Given two sets of neural re-
sponses X,Y € R"*? to the same n stimuli from p neurons
(or voxels), we first identify shared d = min (n, p) latent dimen-
sions by computing the singular value decomposition of their
cross-covariance on training data: cov(Xain, Yirain) = U VT,
where U,V € R”*4 are orthonormal. Then, we project test
data onto the shared latent space and compute their covari-
ance ¥ = coV(XiestU, YiestV ). Finally, we extract the diagonal
of £ € R4 which represents the spectrum of reliable vari-
ance in the dataset that generalizes to novel stimuli across
trials?.

Estimating spatial scale Each latent dimension in the
dataset is represented by a linear combination of neurons
(columns of U and V) whose weights can be visualized on
the cortical surface (Fig. 1C®%). These modes of variation
could have coarse- or fine-grained spatial structure depend-
ing on how strongly neighboring neurons co-activate. We
define the spatial scale of the k-th latent dimension* (e.g.

'In both datasets, we focus on stimuli seen at least twice and
restrict our analyses to the first two presentations of each image.

2|n practice, we compute better estimates of the covariance spec-
tra using 8-fold cross-validation across stimuli and normalize the
spectra by the number of neurons p.

3For visualization purposes in Fig. 1C, we plot the latent dimen-
sions of a large visual region in the human brain but all other results
are for V1.

4We average the spatial scales of Uy and V; to obtain a single
estimate for each latent dimension.
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Figure 1: (A) Schematic of cross-decomposition procedure. Neural responses to the same stimuli on two different trials are used
to identify shared latent dimensions and estimate reliable covariance spectra 3. (B) The covariance spectra for human (blue-
green) and mouse (purple-orange) V1 responses to natural images have characteristic power-law structure that is consistent
within individuals in each dataset but different across datasets. (C) Sample latent dimensions in humans (projected onto the
cortical surface) and mice (in a 1 mm cube of cortex) display spatial structure at various scales. (D) The spatial scale of the
latent dimensions decays with rank as a power law with exponent —0.35, suggesting volumetric scaling. (E) The reliable variance
along a latent dimension scales with its spatial scale as a power law whose exponent is consistent both within and across the
datasets. All spectra are averaged within bins of exponentially increasing width to extract reliable signal even in noisy regimes
(Lin & Newberry, 2023). Error bars denote standard deviations across 8 folds of cross-validation.

U € RP) as the width ¢ of the Gaussian kernel G5 required
to spatially smooth its weights for their variance to decay to

suggests that visual information is densely distributed across
all voxels.

1Gs(UW)II> =107,

Results & Discussion

Both human fMRI and mouse calcium imaging responses to
natural images in primary visual cortex display characteristic
power-law covariance spectra (variance o rank®) over multi-
ple orders of magnitude (Fig. 1B). However, while the power-
law exponents o are consistent across individuals within each
dataset, they differ significantly across datasets (Olmouse =
—1.19+0.11; 0hyman = —1.85£0.11, mean =+ sd).
Additionally, we observe that the spatial scale of these la-
tent dimensions also decays with rank as a power law (Fig.
1D). In the human data, spatial scale o rank %33, which im-
plies that the number of latent dimensions approximately
scales with volume (i.e., rank o< spatial scale’ = volume). This

Surprisingly, plotting the stimulus-related variance along
each latent dimension against its spatial scale (Fig. 1E) re-
veals universal power-law scaling across both humans and
mice (variance o< spatial scaIeB), with similar indices within
and across datasets (Bhuman = —5.36 £ 0.32; PBrouse =
—5.27+1.14). We also note that when the spatial scale ap-
proaches the typical separation between neurons (= 20 um),
the effective rank of the spectrum approximates the number of
neurons in human V1, again suggesting that the neural repre-
sentation of natural images is dense in the available neurons.

Together, our results suggest that analyzing the spatial
structure of latent dimensions might reveal fundamental prin-
ciples of cortical organization that are shared across species
and detectable at scales ranging from single neurons to voxels
comprising millions of neurons.
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