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Abstract:

In real-word learning, individuals continually encounter
complex arrays of features, only some of which are
crucial to the outcomes they experience. How do they
manage to discern which combinations of features are
relevant for learning? This study explores how dynamic
noise correlations - contextually enhanced correlations
in neuronal firing - can focus learning on the most
relevant feature dimensions in the current context by
leveraging prior experience with these features.
Participants were tasked with discriminating
multi-dimensional perceptual stimuli under various task
conditions that specifically incentivized learning about
distinct, combined feature dimensions. We found that
people learned preferentially in relevant feature
dimensions, but to a degree that differed across
individuals. These results motivate ongoing work
modeling human subject behavior with neural networks
and probing noise correlations in feature
representations with fMRI. Our approach provides a
window into how adaptive neural mechanisms can
enhance the efficiency of learning in complex
environments.
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Introduction

Learning in high-dimensional environments is
inherently challenging, yet people can learn quickly
and efficiently, often from minimal data. This raises a

critical question: how does the brain adjust the
weights connecting the roughly 100 billion neurons in
the human brain to learn the right thing from each
situation? Human perceptual learning is deeply
entwined with the processes by which information is
prioritized and encoded by the neuronal population.

While noise correlations can limit the capacity of
neural codes by reducing extractable information, they
can play a multifaceted role when tuned to varying
task structures (Averbeck, Latham, & Pouget, 2006).
These correlations vary in behavioral context
suggesting that they are adaptive rather than
detrimental and can potentially reflect task-driven
changes in circuitry (Cohen & Newsome, 2008). More
recently, it has been shown that, by focusing neural
computation onto task-relevant dimensions, noise
correlation can improve learning speed and accuracy
(Nassar, Scott, & Bhandari, 2021).

Our study aims to test the noise correlation learning
theory by developing a multi-dimensional learning
task specifically designed to incentivize and measure
learning prioritization across various combined feature
dimensions. Here, we report initial results that focus
on these first two objectives, setting the stage for our
ongoing investigation into how the geometry of neural
variability, as measured by fMRI, coordinates learning
across relevant feature dimensions.



Method

We employed a dynamic perceptual discrimination
paradigm where participants learned to discriminate
between multi-dimensional perceptual stimuli: random
dot patterns that varied in two dimensions — color
(proportion of dots that are orange or purple) and
direction of motion (motion coherence upward or
downward), as in Figure 1. The study featured two
task conditions, each of which required the integration
of information from both stimulus dimensions. In each
condition, participants viewed a stimulus containing
motion and color information and were required to
specify one of two possible responses. Within each
condition, rules changed occasionally, but always by
changing on a fixed feature dimension (ie.
rightward/purple). These uncued intra-dimensional
shifts involved translational shifts in the learning
boundary, requiring them to adapt their decision
making within a familiar dimension. These shifts
compelled participants to continuously adjust their
learning strategies by focusing on the most relevant

feature dimension.
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Figure 1: Panel A-C llustrates a participant’s

responses to three distinct decision boundaries
(dashed lines) with solid circles marking correct trials
and hollow circles marking incorrect trials. Note that
boundary A was encountered in a separate task
condition from boundaries in B&C. Panel D-F displays
average participant learning curves for these decision
boundaries. Notably, the participant’s accuracy
improved across trials, indicating successful learning.

Results

Our primary goal was to design a task that could
measure the degree to which individuals focused
learning onto specific task relevant combined feature

dimensions. To test our success on this measure we
examined behavior with logistic regression that
allowed us to assess how color and motion signed
coherence values affected choice behavior. We ran
this model in sliding windows over time and then
examined the change in coefficients from one time
point to the next as a proxy for learning. In particular,
we interpret the change in coefficients as a learning
gradient, providing info not only about whether
participants are using a given feature more or less, but
also about how participants tended to jointly adjust
feature weights.

The left panel in Figure 2 portrays these learning
gradients for an individual participant who focused
learnings on the relevant features for each condition
(blue and red arrows). Note that correlation between
the endpoints of the red arrows is positive, whereas
the correlation between the endpoints of the blue
arrows is negative, signifying differential focus of
learning onto feature dimensions corresponding to
those shown in figure 1B and 1A respectively. Figure
2B quantifies these correlations for 15 participants
(blue points) as well as what would be expected from
an agent who performed the task perfectly (red
points). Based on the demands of our two learning
conditions (Fig 1A&B), we would expect that learning
should prioritize the positively correlated color-motion
dimension in one condition (y-axis) and the negatively
correlated dimension in the other (x-axis). The
clustering of participants in the upper-left quadrant
suggests that participants are amplifying learning in
the dimensions appropriate for each condition.
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Figure 3: Color and motion learning coefficients
were derived using a sliding window with window size
of thirty and step size of one. The learning gradient —
difference between coefficients across successive
windows. Panel A lllustrates how a participant’s
learning gradients evolve over time. Panel B
aggregates all participants’ learning gradient
correlations.



Conclusion

In conclusion, participants’ demonstrated clear
learning prioritization and adaptation have highlighted
the effectiveness of our approach. Moving forward,
we test whether neural variability, as measured by
fMRI, drives learning onto specific dimensions.
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