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Abstract
Consider an agent moving in the n-dimensional integer
lattice. We model a neuron of this agent as a finite transi-
tion system and show, using a pumping lemma type of
argument, that a grid cell-like behavior emerges under
very mild assumptions. If there is one location in the envi-
ronment which is reliably recognized by the neuron, then
there is a “grid” of locations which are indistinguishable
from the point of view of that neuron. By a grid we mean
a finite union of cosets of a full-rank subgroup of the lat-
tice. We propose that this may shed light on the possible
origins of grid cells.
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A minimal requirement for a neural structure which helps nav-
igation is that its functionality depends in a reliable way on the
spatial location of the agent. The ability to return to the same
spot after either a long or a short time is one of the fundamen-
tal needs of most mobile living creatures. Grid cells offer an
example of neurons whose firing depends on the organism’s
location. They have been found in rats’ and other mammals’
medial entorhinal cortices (Hafting, Fyhn, Molden, Moser, &
Moser, 2005; Fyhn, Hafting, Witter, Moser, & Moser, 2008;
Yartsev, Witter, & Ulanovsky, 2011; Killian, Jutras, & Buffalo,
2012). Other navigation cells include border1 (Solstad, Boc-
cara, Kropff, Moser, & Moser, 2008), head direction (Taube,
Muller, & Ranck, 1990), speed (Kropff, Carmichael, Moser,
& Moser, 2015), object-vector (Høydal, Skytøen, Andersson,
Moser, & Moser, 2019), and place cells (O’Keefe & Nadel,
1978). If the locations of the organism navigating a 2D-
space are recorded when a given grid cell fires, a periodic
triangular pattern covering the available environment typically
emerges (Fyhn, Molden, Witter, Moser, & Moser, 2004).

A lot of attention has been devoted to the question of how
grid cells “know” when to fire. Proposed models include at-
tractor dynamics (Yoon et al., 2013), path integration (Burak
& Fiete, 2009; Fuhs & Touretzky, 2006), superposition of
wave inputs (Burgess, 2008), Fourier analysis (Rodrı́guez-
Domı́nguez & Caplan, 2018), spike-timing-dependent synap-
tic plasticity (Monsalve-Mercado & Leibold, 2017), and many
more (Giocomo, Moser, & Moser, 2011; Moser et al., 2014).

In contrast to this line of research, in this paper we propose
that a grid cell-like behaviour will under certain assumptions

1Also known as boundary cells.

inevitably emerge from any attempt of a neuron to correlate
with any spatial location. The intuition is that if a neuron has
a limited capacity, its behaviour will inevitably be repeated;
eventually its state will circle back to the same state as before
and from that point on its behaviour will be repeated. Since
the environment is “larger” than the neuron’s state space, this
circling back is bound to happen even if the agent has not
returned to the same location. This intuition is the same as
the one behind the so-called pumping lemma in the theory of
deterministic finite automata and transition systems, (Sipser,
2013). We assume that the neuron is modelled by a finite
state deterministic strongly connected deterministic transition
system which receives the agent’s motion primitives as an in-
put (the “efferent copy”), and that the environment is the n-
dimensional integer lattice.

Basic Definitions

A deterministic transition system (DTS) is a tuple (X ,x0,U,τ)
where X and U are sets, τ : X×U →X is a transition function,
and x0 ∈ X is the initial state. By convention, we denote xu
instead of τ(x,u). Denote by U∗ the set of finite strings of
elements of U including the empty sequence denoted by λ.
Given x ∈ X and u ∈U∗, denote by xu = xu1 · · ·un where u =
(u1, . . . ,un). Given u1,u2 ∈U∗, denote their concatenation by
u1u2. We now have (xu1)u2 = x(u1u2) for all x ∈ X , u1,u2 ∈
U∗ and by convention xλ = x. This makes x 7→ xu an action of
the monoid U∗ under concatenation on X . A DTS is strongly
connected, if for all x1,x2 ∈ X there is u ∈U∗ with x1u = x2.

By N we denote the set of natural numbers including zero,
Z is the set of integers. Let d ∈N be the dimension of the envi-
ronment. Let U be the standard basis of Rd , U = {e1, . . . ,ed}
where ek is the unit vector along the k:th coordinate. The en-
vironment is the DTS (Zd ,0,U,τ) where 0 is the null vector,
and τ(z,u) = z+u, for all z ∈ Zd ,u ∈U . This means that for
all u ∈U∗, we have 0u = ∑

n−1
k=0 uk where n = |u| is the length

of u. Note that now for all u,u′ ∈U∗ we have 0uu′ = 0u+0u′.
The information transition system (or the neuron) is a tuple

I= (I, i0,U,ϕ,F) where (I, i0,U,ϕ) is a DTS and F ⊆ I is the
set of firing states. Note that the set U is the same as that of
the environment. This reflects the modelling assumption that
the motion primitives (elements of U ) which govern the motion
of the agent are also the only inputs to this neuron. These can
be thought of as the efferent copies. As before, if u ∈ U and
i ∈ I, denote by iu = ϕ(i,u), and by iu = iu1 · · ·un where u =
(u1, . . . ,un). When the agent is moving around, it is executing
some motion u ∈ U∗. The resulting location of the agent is
z = 0u and the resulting internal state is i = i0u. Note that



by our notational convention the first one is evaluated using τ

and the second using ϕ. If i ∈ F , we say that the neuron fires
at z, otherwise it does not fire. If the neuron reliably fires at
z, i.e. independently of u which led there, we say that z is an
always firing location. More formally, let

A(I) = {z ∈ Zd | ∀u ∈U∗(0u = z → i0u ∈ F)}.

For our purposes we will define a relatively general concept
of a grid. A full-rank sublattice of Zd is a set of the form

{c+n1z1 + · · ·+ndzd | n1, . . . ,nd ∈ Z}

where c ∈ Zd is a constant, and z1, . . . ,zd ∈ Zd is a basis
for Rd , or equivalently, z1, . . . ,zd are linearly independent as
vectors in Rd . Using algebraic terminology this is the same as
a coset of a full-rank subgroup of Zd . A grid in Zd is a finite
union of full-rank sublattices of Zd .

Main Theorem
We are now in the position to formulate our main theorem us-
ing the notation from the previous section:

Theorem 1. If I is finite and strongly connected, then A(I) is
a grid.

Proof. For each i ∈ I, let Z(i) = {z ∈ Zd | ∃u ∈U∗(z = 0u∧
i0u = i)}. First observe that Z(i0) is closed under addition:
given z,z′ ∈ Z(i0) there are u and u′ such that z = 0u, z′ =
0u′, and i0u= i0u′ = i0. Now z+z′ = 0u+0u′ = 0uu′; on the
other hand we have i0uu′ = i0u′ = i0, so uu′ witnesses that
z+ z′ ∈ Z(i0). A subset Z ⊂ Zd is k-dense, if for all z ∈ Zd

there is z′ ∈ Z with |z− z′| ≤ k. We observe then that Z(i0)
is k-dense: Since I is finite and strongly connected, there
is k ∈ N such that every state i ∈ I can be reached from any
other state in less than k steps. Then given z∈Zd , find u such
that 0u = z and let u′ be the shortest sequence which takes
i0u to i0. Then z′ = z+ 0u′ ∈ Z(i0) and |z− z′| = |0u′| < k.
We use the following without proof due to space limitations:

Fact. Every k-dense subset of Zd which is closed under ad-
dition is a full-rank subgroup of Zd .

Thus, Z(i0) is a full-rank subgroup of Zd . From this it is
srtaightforward to see that for each u, the coset 0u+ Z(i0)
equals Z(i0u). In particular, if Z(i0u)∩Z(i0u′) is non-empty,
then Z(i0u) = Z(i0u′). Define u ∼ u′ iff Z(i0u) = Z(i0u′).
Then ∼ is an equivalence relation on U∗. Denote the ∼-
equivalence class of u ∈ U∗ by [u]. Let F ′ ⊂ F be defined
by

F ′ = {i0u | ∀u′ ∈ [u](i0u′ ∈ F)}.

The theorem will follow once we prove that

A(I) =
⋃

i∈F ′
Z(i). (1)

Suppose z ∈ Z(i) and i ∈ F ′. By the definition of Z(i), there
is some u such that z = 0u and i0u = i. Suppose u′ is any
(other) sequence such that z = 0u′. Then z ∈ Z(i)∩Z(i0u′)

and so u ∼ u′. By the assumption that i ∈ F ′, we have i0u′ ∈
F . By arbitrariness of u′ it follows that z ∈ A(I). The inclusion
from right to left in (1) follows. Suppose now that z /∈ Z(i)
for all i ∈ F ′. Let u be some string such that z = 0u. Then
z ∈ Z(i0u) and so i0u /∈ F ′. This means that there is u′ ∈ [u]
such that i0u′ /∈ F . Thus z ∈ Z(i0u′), and there is u′′ ∈ U∗

such that z = i0u′′ and i0u′′ = i0u′. Since the latter is not
in F , the string u′′ witnesses that it is possible to arrive to z
without firing, so z /∈ A(I) which proves the inclusion from left
to right in (1) and concludes the proof.

In particular, A(I) can be empty (corresponding to the case
F ′ = ∅ in the proof). But, if it is non-empty, then it automati-
cally contains a full-rank sublattice of Zd and is in fact a finite
union of such lattices. This means that if the neuron learns to
recognize a location (fire consistently when the agent arrives
to that location), then it will recognize a grid of other locations
and they will all be indistinguishable from the perspective of
that neuron.

Discussion
We have shown that if the neuron is modelled as a finite de-
terministic transition system and the environment in which the
agent moves is Zd , then the set A of those points z ∈ Zd in
which the neuron is reliably in a firing state (no matter which
action sequence took it there), is a grid. By our own definition
a grid is a finite union of full-rank sublattices. This means that
it is a period set in a strong sense: for each unit vector e ∈ Zd

there is n such that A = ne+A.

Weaknesses

Our approach does not cover cases where the environment is
more complex than the infinite lattice. Most experiments on
grid cells are done in rooms with four walls. We also do not
assume any sensory input to the neuron (only efferent copy
of the performed actions). Finally, even though our framework
explains the emergence of periodic activity, it does not explain
the emergence of a hexagonal pattern. Our assumption of
discreteness might be crucial. Can we reach a similar con-
clusion with a continuous action on Rd with a compact inter-
nal state space? A suitable continuous framework for motion
planning developed by Yershov and LaValle (2010) and further
by Weinstein and LaValle (2024).

Future work

An obvious path forward is to try to account for the weak-
nesses described above. The emergence of the hexagonal
pattern might be explained with the current approach, if it
is combined with certain minimality considerations such as
those presented by Weinstein, Sakcak, and LaValle (2022);
Sakcak, Timperi, Weinstein, and LaValle (2023). A non-
deterministic version of Theorem 1 should be possible to
prove: one where the dynamics of the neuron are non-
deterministic. For this case define the set A as the set of
all those locations where the neuron will always end up in a
firing state notwithstanding the indeterminacy. It has already



been shown by Boccara, Nardin, Stella, O’Neill, and Csicsvari
(2019) that the grid is distorted in the presence of goals. Thus,
introducing information about objectives or other sensory data
to the picture as well as other navigation cells would also be
interesting.

Origins of Grid Cells?
Does our Theorem 1 suggest a potential new theory of the
evolutionary emergence of grid cells? One can argue that
there is an evolutionary pressure for even the smallest organ-
isms to learn to recognize when they have come back to a
particular location. For example, if the organism finds a com-
fortable spot, but has to leave it to find nutrition, it benefits
from knowing its way back. Natal homing is an extreme ex-
ample of this which has developed in many species to large
scale navigation patterns, but likely has evolutionary origins
in more local strategies. In accordance with Theorem 1 this
might lead to a grid-like recognition pattern as a side effect.
This, in turn, may lead to the emergence of other “grid cells”
to disambiguate the indistinguishability raised by the first grid
cell and so on.
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