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Abstract: 

While economic decision-making theories typically assume that 
choices aimed at maximizing rewards are made between available 
options, foragers often reject an immediate option (i.e., skipping). We 
hypothesize that foragers exhibit skipping behavior when they 
prioritize information regarding future rewards and strategically plan 
ahead to encounter potentially more advantageous options. This 
behavior is likely to occur in environments with a level of regularity 
that enables predictability. To test this hypothesis, we manipulated 
the spatial distribution of rewards in a naturalistic harvesting task to 
make future rewards more predictable. Our findings show that 
skipping becomes more frequent as the predictability of future 
rewards increases. Crucially, a generative model that effectively 
captures human behavior suggests that skipping results from a 
compound action policy that prioritizes information-seeking and 
allows for the flexible adjustment of planning depth. The increased 
frequency of skipping, which leads to better performance selectively 
in predictable environments with spatial regularity, indicates that 
skipping behavior is an adaptive decision to maximize rewards in 
predictable environments. 
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Introduction 

Skipping imminent rewards is evidence of the ability to exploit 
the environmental structure (Hayden, 2014). However, it remains 
unclear what underlying cognitive processes contribute to skipping 
behaviors. In this study, using an environment with spatial 
regularity, we designed a generative model that aligns with human 
foraging behaviors and examined the effect of its parameters, 
particularly planning depth and information-seeking policy, on 
skipping.  

Task description 

Naturalistic 3D orchard harvest task 

We constructed a task within a 3D grid world, where rewards, 
comprising two different types (apples and grapes) and quantities 
(high and low), were positioned at intersections. Participants were 
asked to maximize reward collection within a limited number of 
decision-making steps while adhering to a specified collection ratio 
of each reward type. Prior to collecting rewards, participants 
determined whether rewards of the same type were spatially 
clustered (structured) or if different types of rewards were 
randomly dispersed (random) through free observation. In the 
structured environment, the center of a patch contained high-value 
rewards, which were crucial for maximizing foraging outcomes, 
and participants were encouraged to develop strategies aligned 
with the spatial regularity of rewards. 

 

Fig 1 (A) Example view of the task. (B) Two-step task structure: regularity detection phase 
and reward collection phase. (C) Example of environmental structures. (D) Task overview. 
The player's abstract action space consisted of five actions (moving up, down, left, right, and 
foraging) at different temporal costs. Players were able to observe the nine (3x3) adjacent 
reward positions at each state. 

Agent based foraging model 

Model structure 

We designed an agent-based model with ten free parameters that 
exhibit adaptive foraging behavior similar to that of participants 
(Fig 2). The model took the observed map, remaining action steps, 
and the status of reward collection as its input. Then, it generated 
hierarchical actions at each choice: initially deciding to forage or 
move, then determining the direction of action if the agent decided 
to move. The process involves four sequential modules: 1) reward 
reconstruction based on state belief, 2) tree search simulation, 3) 
value calculation, and 4) policy blending. At every step, the 
regularity of rewards was updated and transformed into a measure 
of clusteredness (Fig 2), which served as an indicator of the spatial 
regularity of rewards. We quantified it as the spatial configurational 
entropy based on Wasserstein matrices (Zhao et al., 2019). A high 
clusteredness indicated an increased predictability of future states, 
prompting the model 1) to extend the depth of tree search 
simulations and 2) to prioritize policies that aim to maximize 
environmental information over those that seek to maximize 
reward. 

Reward representation 

In the model, the action in each step was determined by the reward 
value and information value. The reward value was defined by the 
extent to which it reduced the combined pressure of reward 
compositionality and goal. It was represented as a weighted sum 
of the Manhattan distance between the current state within the 
reward map (Summerfield, 2019) and the redress line formed by 
the given goal of the reward ratio and the optimal goal point.



 

Fig 2 Model structure. The model computes beliefs about the environment through external states and subsequently extracts multiple plans inside the rebuilt map 
via simulation. In the final step, it blends information and internal reward policies with weights based on these beliefs to derive an action that maximizes internal 
value.  

On the other hand, the information value increased proportionally 
to the area of newly explored regions (Bermudez-Contreras, 2020) 
and the increase in clusteredness of the current goal reward type 
achieved through the action. 

Results 
Participants exhibited a higher frequency of skipping in 
environments with a structured layout, where future rewards were 
more predictable (Fig 3A). Notably, there was a positive correlation 
between the frequency of skipping and foraging scores selectively 
in the spatially structured environment (Fig 3B). 

 
Fig 3 Participants’ skipping frequency and foraging scores in random and 
structured maps. 
To construct an agent that mimics the foraging behavior and 
generates skipping action patterns observed in human subjects, 
we fitted the model's ten parameters to each individual subject 
(N=14).  

 
 
 
 
 
 
 
 
 
 
 

Fig 4 (A) Example foraging trajectory of a fitted model agent compared to that 
of a human participant. (B) Skipping frequency across model parameters. 
 
The model agent generated different foraging trajectories 
depending on the planning depth (i.e., tree simulation depth) and 
policy blending ratio, which is a weight assigned to each policy, 
and variations in the skipping pattern were observed accordingly 
(Fig 4A). A deeper planning depth and a stronger tendency 
towards information seeking were associated with more proactive 
reward-skipping behaviors (Fig 4B).  

    Human subjects did not merely increase their reward skipping 
frequency; instead, they engaged in strategic skipping to achieve 
efficient foraging. This behavior was accomplished by adjusting 
planning depth and policy blending ratio, which were manipulated 
based on their beliefs about the spatial regularity of rewards. 
These beliefs were calculated through Bayesian inference that 
takes perceived clusteredness from a reward map as input, and 
continually updates the participant’s beliefs about the 
environmental structure based on recent observations. Indeed, the 
model that adjusted latent behavioral variables based on spatial 
regularity demonstrated high predictive accuracy for human 
decision-making, not only in random maps but also in structured 
maps (Fig 5A). 
 
 
 
 
 
 
 
 
 
 
 
Fig 5 (A) Model performance showing the goodness of fit between the blended 
policy and human behavior. (B) Planning depth and policy blending ratio 
modulated through updated belief of spatial regularity of rewards. (C) 
Correlation between degree of adjustment for latent behavior variables and 
foraging score 
Analyzing the dynamics of parameters fitted to each individual 
subject at every step revealed that subjects who obtained higher 
foraging scores tended to adjust their planning depth and policy 
blending ratio more sensitively in response to the spatial regularity 
of rewards. In contrast, subjects with lower foraging scores 
consistently adhered to a greedy strategy, irrespective of 
environmental beliefs (Fig 5B). This suggests that flexible strategy 
shifting based on spatial information is linked to strategic reward-
skipping actions and higher foraging outcomes (Fig 5C). 

Conclusion 
This study reveals that skipping behaviors arise from the flexible 
adjustment of planning depth and prioritization of information-
seeking when the spatial configuration becomes more predictable. 
The increased performance associated with the flexible 
adjustment of these parameters, which results in skipping, 
suggests that adjusting planning depth and behavioral policy is an 
adaptive strategy in an environment with varying degrees of 
regularity. 
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