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Abstract
Abstract, or disentangled, representations are a promis-
ing mathematical framework for efficient and effective
generalization in both biological and artificial systems.
We investigate abstract representations in the context of
multi-task classification over noisy evidence streams – a
canonical decision-making neuroscience paradigm. We
derive theoretical bounds that guarantee the emergence
of disentangled representations in the latent state of any
optimal multi-task classifier, when the number of tasks
exceeds the dimensionality of the state space. Turning to
simulations, we confirm that RNNs trained on multi-task
classification learn disentangled representations in the
form of continuous attractors, and zero-shot generalize
out-of-distribution (OOD). We demonstrate the flexibility
of the abstract RNN representations across various deci-
sion boundary geometries and in tasks requiring classi-
fication confidence estimation. Closely relating to repre-
sentations found in humans and animals during decision-
making and spatial reasoning tasks, our framework sug-
gests a general principle for the formation of cognitive
maps that organize knowledge to enable flexible general-
ization in biological and artificial systems alike.
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Introduction
Humans and animals can decide between previously unen-
countered options effortlessly (Lake, Ullman, Tenenbaum, &
Gershman, 2016; Bongioanni et al., 2021). One mechanism
for such OOD generalization is to first decompose a stimulus
to its attributes. For example, imagine you are at a grocery
store, trying to pick a mango. You might have never seen a
mango before, but you can still infer whether one is ripe or
not, based on your experience with other fruit, e.g. bananas.
Crucially, such inferences are automatic when the brain’s rep-
resentation of these stimuli is compositional, each axis of the
representation corresponding to an attribute; training a linear
decoder (i.e. a downstream neuron) to differentiate ripe vs.
unripe bananas zero-shot generalizes to mangos (Fig. 1a).

Such representations have been coined abstract (Saez,
Rigotti, Ostojic, Fusi, & Salzman, 2015; Bernardi et al., 2020),
or (in the ML literature) disentangled (Higgins et al., 2017),
and have been linked to OOD generalization. Johnston and
Fusi (2023) showed that feedforward neural networks develop
abstract representations when trained to multitask. How-
ever, real-world decisions evolve dynamically over time, as the
decision-maker collects information about attributes of avail-
able options (e.g. caloric content, nutrients etc. for food) and
integrates this information towards a final decision (Krajbich,
Armel, & Rangel, 2010). Therefore, to accommodate for
the crucial ability to dynamically update evolving beliefs over
time for decision-making, we train recurrent neural networks
(RNNs) to multitask canonical evidence accumulation tasks.

Results

Model and Setup

In our setting, RNNs receive two noisy evidence streams
X(t) ∈ R2 (although we extend to higher input dimensionality
D later), i.e. X(t) = x∗+σN (0,I), where x∗ = [x1,x2]

T is the
true evidence in a certain trial (xi ∼Uniform(−0.5,0.5)) and σ

is the input noise standard deviation, and a fixation input trig-
gering the final decision (Fig. 1c). x1 and x2 correspond to dif-
ferent options under consideration or different attributes of the
same item. The inputs are passed through a static encoder
which non-linearly mixes them and increases their dimension-
ality, akin to a perceptual system. The target output y(x∗) is
a vector of +1s and -1s, depending on whether x∗ is above
or below each of the classification lines (Fig. 1b). For exam-
ple, if x1 is food and x2 water reward, lines of different slopes
correspond to preference of one or the other depending on
the animal’s internal state. We train the network for all tasks
simultaneously with backpropagation-through-time (BPTT).

Multitasking leads to disentangled representations

Fig. 1d shows the top 3 PCs of RNN activity for a network
trained on 24 tasks. Each trial is a line, while color saturation
indicates time in the trial. Trials start from the center and move
outwards, according to the location in state space x∗ for this
trial corresponds to. To map the representation space to the
state space, we color the last timepoint in each trial (squares)



Figure 1: (a) An abstract representation. (b) Data generating process. Each line is a task. (c) Multitasking RNN architecture.
(d) Representation learned by the RNN (top 3 PCs, capturing 85% of the total variance). (e)-(f) Zero-shot OOD generalization
setting and performance. (g) Simulations validate our theory: OOD generalization is achieved when Ntask ≥ D.

according to the quadrant the trial was drawn from. We find
that the network learns a 2D continuous attractor (red x’s) that
provides a disentangled representation of the 2D state space.
This implies that the network can store and update an esti-
mate of x∗ in short-term memory, from which it can presum-
ably generalize to any other task involving these variables.

To test that, we keep network weights fixed and train a lin-
ear decoder to output x∗ at the end of the trial (Fig. 1e). We
perform OOD 4-fold crossvalidation, i.e. train the decoder on
3 out of 4 quadrants and test on the remaining quadrant. We
also evaluate in-distribution (ID) performance by training the
decoder in all quadrants. We find that ID performance (as
quantified by r2) increases with the number of tasks, and the
OOD generalization gap decreases until OOD and ID gener-
alization performance are almost identical (Fig. 1f); therefore
the network has learned an abstract representation that gen-
eralizes OOD in a zero-shot fashion. The same conclusions
hold when training RNNs for free reaction-time tasks where
they have to report confidence in their decisions (Krajbich et
al., 2010), and for non-linear tasks (data not shown).

A theory of OOD generalization

We sought to understand the properties of optimal multi-
classifiers in the paradigm illustrated in Fig. 1b,c. We denote
the set of classification estimates as Ŷ, a vector of Bernoulli
random variables. We prove (not included here for brevity)
that any optimal multi-task classifier with i.i.d. noisy inputs
X(1), . . . ,X(t) implicitly estimates the ground truth coor-
dinate x∗ in its latent state Z(t) in a disentangled format.

x∗ →{X(t)}→ Z(t)→ Ŷ(t) (1)

Specifically, we prove that Z(t) is an abstract representa-
tion of x∗ as long as the number of classification tasks Ntask

exceeds the dimensionality of the state space D. This result
holds for any system that performs optimal multi-task classi-
fication with a latent variable separating the inputs from the
outputs (e.g., RNNs, Bayesian filters, etc.), regardless of the
internal dynamics of the latent state.

To test our theory, we run RNN simulations increasing D
(i.e. adding more noisy inputs to Fig. 1c), while varying Ntask.
Fig. 1g shows OOD generalization performance for various
combinations of D and Ntask. We observe that performance
is bad when the Ntask < D, but it increases when Ntask ≥ D.
This increase is more gradual for higher D, which is in line
with remarks by Johnston and Fusi (2023) that it is easier to
learn abstract representations for high D. Overall, these find-
ings confirm our theory that in order to learn representations
that generalize OOD, Ntask should exceed D. This result is re-
markable, especially for high D, because it goes against our
intuition that Ntask should scale exponentially with D to ade-
quately fill up the space in order to provide enough information
to localize x∗; instead it need only scale linearly.

Discussion

We here show that multitasking readily leads to representa-
tions that can OOD generalize to any downstream task involv-
ing the same variables, and develop a theory that explains
why. So far, the workhorse model for decision-making has
been context-dependent computation, where a single task is
carried out at a time and task identity is cued to the RNN by a
one-hot vector (Mante, Sussillo, Shenoy, & Newsome, 2013).
However, context-dependent decision making results in col-
lapsed representations that utilize separate parts of the state
space for different tasks (Yang & Wang, 2020), scaling badly
with the number of tasks (linearly) and of variables (exponen-
tially). Such inefficiency could be detrimental for brains, which



need to pack a lot of computation within a large yet limited
neural substrate. Multitasking results in compact, state-space
efficient representations that can be used for any downstream
task, and scale linearly with the number of variables. Both
types of representations are likely to be found in the brain.

Our findings closely relate to representations found in mon-
keys during novel inferential choices (Bongioanni et al., 2021),
similar orthogonal representations found in humans (Flesch,
Nagy, Saxe, & Summerfield, 2022), and to the problem of
path-integration where non-abstract 2D continuous attractors
are learned (Sorscher, Mel, Ocko, Giocomo, & Ganguli, 2023).

Overall, these findings shed light in the conditions under
which biological and artificial systems alike develop represen-
tations that generalize well: they do so when there is enough
pressure from many tasks that involve the same latent vari-
ables. If on the other hand only a single task is to be accom-
plished, a system is more likely to rely on input-output map-
pings, overfitting to the task. Apart from understanding learn-
ing in brains, we hope this work will inspire the development
of deep learning systems with OOD generalization in mind.
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