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Abstract:
Recent advances in AI-neuroscience have revolutionized 
our ability to decode visual images from human brain 
activities. Yet, reconstructing animated scenes, such as 
movies, remains a challenging task due to their intricate 
spatiotemporal dynamics. Here, we introduce a novel 
fMRI-based movie encoding-decoding framework, using 
three major self-supervised learning algorithms, that is, 
VideoMAE, CLIP, and Latent Diffusion Model. These 
algorithms, along with a simple addition to the Diffusion 
model, “TEmporally Smoothed LAtent Representation” 
(TESLAR), enabled to reconstruct the scene with photo-
realistic details and enhanced temporal consistency, 
collectively leading to a semantically richer and natural 
decoding process. This result was further enhanced by 
our thorough investigation of brain encoding, which 
informed the decoding process about which brain areas 
have the most relevant fMRI signals to reconstruct the 
set of visual features. Our framework has a high potential 
to reveal key representational mechanisms underlying 
complex perceptual processes in the human brain. 
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Introduction 
Over the last several decades, the field of cognitive 

neuroscience has made significant strides in revealing 
the principles of how our brain represents various 
sensory stimuli of the external world (=encoding). This 
effort found that the brain encodes each incoming visual 
scene with distinct neural activities across widely 
distributed cortices, which collectively form large-scale 
hierarchical representation (Huth et al. 2016). Notably, 
recent algorithms in generative AI have been employed 
to leverage such cortex-wide signals from fMRI to 
reverse-engineer and reconstruct the visual images 
presented during the brain scan (=decoding). Indeed, 
newly proposed decoding approaches based on a 
“Diffusion” model, a generative algorithm inspired by 
non-equilibrium thermodynamics, demonstrated ultra-
high resolution with great visual details in their image 
reconstruction (Takagi and Nishimoto 2023; Ozcelik 
and VanRullen 2023). Yet most of them are still at the 
level of decoding into a “static” image, not actual 
dynamics or animated scenes as observed in our real 
life. This can be suboptimal, since external sensory 
streams usually contain rich temporal contexts, which 
may provide an important clue for statistical regularity 
of the dynamical event occurring in the nature. 

To fill this gap, here we propose an fMRI-based 
movie encoding-decoding framework, which consists of 
largely 3 self-supervised models (Fig1): A)  VideoMAE 
(masked autoencoder for video; Tong et al. 2022) for 
initial coarse-level fMRI encoding-decoding, B) CLIP 
(Contrastive Language-Image Pre-training; (Radford et 
al. 2021) for the next, higher-order auxiliary encoding-
decoding, which jointly embeds image-text pretraining 

data and finally C) Latent Diffusion Model to reconstruct 
fine-resolution animated scenes using the decoding 
results from the previous generative models.  

 

Figure 1. Model overview 
 

Our contributions are two-folds: 
1) To preserve temporal consistency across the video 
frames reconstructed, we incorporated two components 
into our pipeline: i) VideoMAE to efficiently learn (low-
level) visual dynamic latents from animated frames and 
ii) TEmporally Smoothed LAtent Representation 
(TESLAR) in the reverse diffusion process (see Method 
for details), which allows to avoid a sudden change 
across reconstructed frames. 
2) Before decoding, we first examined the whole brain 
encoding for various visual scenes in the training movie 
segment. This allowed to unbiasedly select the ROIs 
with high encoding accuracy, from which we extracted 
fMRI timeseries for the input to the next decoding 
process. This encoding-based ROI selection enhanced 
interpretability of our framework to better understand a 
representational mechanism of the human brain. 

 

Method 
Dataset. We analyzed ‘StudyForrest’ (Hanke et al. 
2016), 2 hours of opensource fMRI data acquired during 
movie watching. (3T, 8 runs, each 15 mins). From this 
dataset, we randomly chose 5 subjects (sub1-5) and 
used their 7 runs for training (3150 paired movie-fMRI 
data) and a remaining run for test (450 paired data).  

Multi-Level Encoding-Decoding Process. Our 
framework was inspired by hierarchical visual-semantic 
processing in the brain. In the 1st VideoMAE step, we 
aimed at learning representation of a low-level visual 
latent of consecutive video frames to reconstruct a 
coarse-resolution but still informative initial input to the 
next, more fine-scale decoding process. In the 2nd CLIP 
step, we utilized higher-order visual-language features 
in the movie, to further enhance the decoding result with 
enriched semantic contexts. Reflecting this motivation, 
our encoding test based on the training data showed 



 

 

the highest encoding accuracy (Fig2) i) in the low-level 
visual cortices (e.g. V3A, V4) for VideoMAE, ii) in 
higher-order extrastriate visual areas (e.g. V3 c/d, V8) 
for CLIP-vision and iii) in visual-language association 
areas (e.g. PGp, TPOJ) for CLIP-text modules. We took 
these areas as input ROIs for which fMRI data were fed 
into the following decoding pipeline.  

 
Figure 2. Encoding performance for each generative model 

 
1) Low-level encoding-decoding. VideoMAE, a self-
supervised algorithm based on masked autoencoder, is 
designed to capture contextual representation of video 
frames. To this end, VideoMAE masks out 95% of areas 
in the scene and learns to predict these masked aeras 
based on the 5% remaining, unmasked regions (Fig1A).  
More specifically, the encoder of VideoMAE (Vision 
Transformer; ViT) first extracted the latent features from 
the masked video segments. We then trained a kernel-
ridge regression between the ViT latents and fMRI from 
early visual-cortex ROIs (=6384 voxels). Using this 
trained model, we predicted the ViT latents for the test 
movie. These were in turn fed into the decoder part to 
reconstruct the scene in a coarse-level resolution (16 
frames per 1TR [2 secs]), which captured abstract 
layouts and color features of the scene.  
2) High-Level encoding-decoding. Next, to learn 
higher-level semantic features, we employed CLIP, a 
contrastive learning algorithm to jointly learn a shared 
information between image and text data. We trained 
two different kernel-ridge regressions for decoding 
(Fig1B): the one for between CLIP-vision features and 
fMRI from high-order extrastriate visual cortices (=8151 
voxels), and another for between CLIP-text and fMRI 
from the visual-language areas (=5024 voxels). 
3) Diffusion-based video reconstruction. We fed 
those previous decoding results to a final latent diffusion 
model (as conditioning) to shape the reconstruction of 
the video frames. We employed Versatile Diffusion, a 
recently developed multimodal Diffusion algorithm, and 
modified its reverse diffusion such that it temporally 
smooths the latent representation (‘TESLAR’; a linear 
interpolation of Gaussian noises between the previous 
and next frames (Fig1C). This resulted in a smooth 
transition across the reconstructed frames, providing 
both visual naturalness and semantic richness.  

Results 
Fig3 shows examples of our decoding result, i) from 

one subject across different scenes (left) and ii) from 
five subjects for a randomly-chosen, single scene (right).  

 
Bold: 
significance 
(p<0.0001) 

Frame-based Video-based 

Pixel level Semantic (N-way, 
top-1classification) 

Semantic (N-way, top-1 
classification) 

SSIM↑ MSE↓ 2-way↑ 50-way↑ 2-way↑ 50-way↑ 
Full Model 0.2701 98.97 0.8612±0.02 0.1981±0.04 0.8376±0.01 0.2002±0.03 
VideoMAE 0.6356 66.97 0.7519±0.05 0.0815±0.02 0.8157±0.02 0.0994±0.03 

Figure 3. fMRI-based brain decoding result for the subject 1 

To evaluate the accuracy, we employed two different 
levels of metrics, one for pixel-level (Structural similarity 
index measure [SSIM] and Mean Squared Error [MSE]) 
and another for semantic-level (using ViT-based N-way, 
top-1 classification with 100 trials). At a pixel level, 
VideoMAE outperformed the reconstruction of Versatile 
Diffusion (with TESLAR; full model), underscoring its 
utility of capturing low-level primary visual features. At 
a semantic level, Versatile Diffusion excels VideoMAE 
in both frame- and video-based accuracies, indicating 
the advantage of CLIP-vision and -text components in 
identifying visuo-semantic features from the video data. 
Collectively, these accuracies are suggestive of neural 
correlates underlying hierarchical information process 
in the human brain. 

 

 
Figure 4. Encoding of the Diffusion denoising process 

Finally, we were also interested if there was any brain 
correspondence to the details of generative process in 
the Diffusion model. To answer this, we performed an 
encoding analysis along the denoising steps. As in Fig4, 
discernible brain activation patterns were observed as 
the step increased, showing that they gradually diffuse 
from early visual cortices up to high-order areas. This 
finding suggests that in order to generate (or imagine) 
a dynamical scene with greater visual details, our brain 
requires increasingly widespread cortical allocation, 
especially for multiple transmodal systems. 

Conclusion 
The proposed movie encoding-decoding framework 

has a high potential in developing a more naturalistic 
mind-reading technique, which may be helpful to unveil 
atypical perceptual process in psychiatric disorders.   
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