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Abstract: 

A challenge in using naturalistic tasks is to describe 
complex data beyond simple summary of behaviors. Lee 
et al. (2024) showed that an inverse reinforcement 
learning (IRL) algorithm combined with deep neural 
networks is a practical framework for modeling real-time 
behaviors in a naturalistic task. However, it remains 
unknown whether the reward function inferred by IRL 
reflects value representations in the reward circuit. In this 
preliminary study (N=10), we investigate the neural 
correlates of the reward inferred by IRL. Human 
participants were scanned using fMRI while performing a 
real-time driving task (i.e., highway task). We show that 
the trajectory of IRL reward during the task strongly 
correlates with the trajectory of BOLD signals in the 
reward circuit including the prefrontal cortex, the 
striatum, and the insula. The results demonstrate the 
validity of the IRL as a modeling framework that explains 
both behaviors and the brain activity in a real-time task. 
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Recent technological advances in computational 
power and data acquisition methods (e.g., virtual reality, 
mobile devices) have increased the use of naturalistic 
tasks and data in neurocognitive studies (Parsons, 
2015). A challenge in using naturalistic tasks is to 
describe the observed data beyond simple summary of 
behaviors. Data from naturalistic tasks often 
encompass a multitude of dimensions that define an 
immense number of possible states and actions, posing 
challenges in modelling the behaviors in the tasks 
(Thompson et al., 2019; Wise et al., 2023). 

Lee et al. (2024) used an inverse reinforcement 
learning (IRL) algorithm combined with deep neural 
networks (Fu et al., 2017) to model the behaviors in a 
real-time driving task (i.e., highway task), in which 
participants controlled a car in a simulated highway. 
The objective of IRL is opposite to that of “forward” 

reinforcement learning (RL; Sutton & Barto, 2018). IRL 
learns the reward function underlying observed 
behaviors, whereas RL learns behavioral policy by 
observing rewards. Lee et al. (2024) showed that real-
time trajectories of IRL reward in the highway task 
provide indicators of impulsivity, with impulsive 
participants showing higher rewards in risky situations. 

The reward inferred by IRL is interpreted as a 
participant’s subjective reward, but it is unclear whether 
the IRL reward indeed reflects value representations in 
the brain, especially the reward circuit. To evaluate the 
validity of IRL as a modeling framework for 
understanding reward processing in the brain during a 
real-time task, we conducted an experiment in which 
participants performed the highway task while 
undergoing fMRI scanning. We hypothesized that IRL 
reward trajectories would be similar to the trajectories 
of BOLD signals in the reward circuit including the 
prefrontal cortex, the striatum, and the amygdala 
(O'Doherty et al., 2017). We hypothesized that brain 
regions in the reward circuit would show heightened 
activity during overtaking (rewarding event) and 
reduced activity during crashing (aversive event). 

Results 

We first analyzed the data using a generalized linear 
model (GLM) to investigate whether the salient events 
in the task modulate the reward circuit. The 
independent variables in the GLM were the onsets of 
the two events of interest (overtaking and crashing; Lee 
et al., 2024). Six head movement regressors and 
button-press regressors were also included as 
covariates. Figure 1 shows the neural correlates of 
overtaking and crashing. As hypothesized, the striatum 
exhibited increased and decreased activity during 
overtaking and crashing, respectively. The results 



suggest that IRL is a valid framework for investigating 
reward processing in the brain.  

We then performed a time-series analysis to find an 
association between the IRL reward and the brain 
activity, with overtaking and crashing as the events of 
interest. For the analysis, we generated mean BOLD 
time-series data for each ROI defined by the whole 
brain functional parcellation (k = 50) from Neurosynth 
(neurosynth.org). 

In a group-level analysis utilizing the data averaged 
across participants, the trajectory of IRL rewards for 
overtaking (-12 to 12 seconds from the onset) showed 
strong correlation (p < 0.0001) with the BOLD time-
series in several ROIs including the prefrontal cortex, 
the insula, and the striatum (O’Doherty, 2004). Figure 
2 illustrates the standardized trajectories of the IRL 
rewards and the BOLD signals from three ROIs within 
the striatum, which was of main focus in the GLM 
analysis. In the nucleus accumbens (r = 0.49), the 
dorsal caudate (r=0.76), and the putamen (r = 0.49), IRL 
reward trajectories closely resemble BOLD signals. By 
contrast, the reward trajectory for crashing did not show 
considerably strong association with reward-related 

BOLD signals. 

To summarize, this preliminary study showed that the 
reward inferred by IRL can capture value 
representations in the brain. This demonstrates the 
potential utility of IRL as a modeling framework that can 
account for both behaviors and the brain activity in a 
real-time task. 

Methods 

Participants 

We recruited ten undergraduate and graduate 
students at Seoul National University (plan to recruit up 
to 50 participants in total). The study was approved by 
the Institutional Review Board at the Seoul National 
University. 

Procedures 

Participants performed the highway task (Lee et al., 
2024) while undergoing fMRI scanning (Siemens TIM 
Trio 3T scanner, TR = 1200ms, TE = 30, FOV = 256mm, 
slices: 64, slice thickness = 2.3mm). Participants were 
instructed to drive a car on a simulated highway as fast 
as possible without crashing into other cars. The car 
was controlled via a four-button response box, with 
each button corresponding to one of four possible 
actions: accelerate, decelerate, turn left, and turn right. 
Participants performed four blocks of the task, each 
lasting for approximately 9 minutes. 

Inverse reinforcement learning 

We inferred the reward functions of the participants 
using adversarial inverse reinforcement learning (AIRL; 
Fu et al., 2017) algorithm. The algorithm trained deep 
neural networks for each participant based on their 
state and action trajectories throughout the task. Once 
trained, the deep neural networks could calculate the 
subjective reward of each participant for any possible 
state. 

Figure 2: Trajectories of the IRL rewards and the BOLD signals in the striatum around at the onset of overtaking. 
The shaded areas in the graphs indicate standard errors of the means. 

Figure 1: Neural correlates of (A) overtake and (B) 
crash (p < 0.001, uncorrected). Color bars indicate t-
statistics. 
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