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Memories of recent stimuli are crucial for guiding behav-
ior. However, the same sensory pathways that receive
information to be remembered are constantly bombarded
by new sensory experiences, and it remains largely un-
known how the brain overcomes interference between
sensory and memory representations. Here we report
which mechanisms might be at play in artificial and bio-
logical networks that are robust to sensory-memory inter-
ference. We examined recurrent neural networks (RNNs)
that were either hand-designed or trained using gradient
descent methods, and compared our results with neural
data from two macaque experiments. We found an infi-
nite RNN solution space, that included gating of the sen-
sory inputs, modulating synapse strengths to achieve a
strong attractor solution, and dynamic coding of feature
preference, such that, at the extreme, cells invert their
tuning over time. Neural data from macaque brain area
medial superior temporal (MST) was most aligned with
the Gating + Inversion of Tuning solution. This solution
was also consistent with experimental results from mon-
key behavior. Taken together, our results help elucidate
how recurrent neural networks are able to solve the prob-
lem of sensory-memory interference using a combination
of both static and dynamic codes, and suggest MST may
play a role in this computation.
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Our behavior is guided both by immediate sensory experi-
ences and by memories of recently encountered stimuli (Fig-
ure 1a). Many studies explore how neural circuits store memo-
ries. However, it remains largely unknown how these memory
systems both allow information to flow into them while also
preserving this information as we continue to interact with the
world (Libby & Buschman, 2021; Cueva* et al., 2021).

The problem of sensory-memory interference is likely
widespread as biologically relevant variables are often en-
coded by broadly tuned cells, for example, direction and ori-
entation tuning of MT and V1 neurons (Schiller et al., 1976;
Albright, 1984). If two stimulus orientations are presented suc-
cessively at the same location (S. Ding et al., 2017), they pro-
vide similar inputs, via the same set of connections, to the
same set of memory units. How, then, does the system pre-
vent the memory of the first orientation from being overwritten
by the arrival of the second? Outside of controlled experi-
mental settings, the problem of sensory-memory interference
must still be overcome by neural circuits as eye movements
realign relevant stimuli so we effectively have sequential pre-
sentations of stimuli in the same retinotopic positions, much
like the experimental settings.

Results
To ground our study of sensory-memory interference with ex-
perimental data, we model a working memory task that in-
cludes a distractor stimulus as described in Figure 1b (Suzuki
& Gottlieb, 2013). The goal of this task is to remember the

C
your gate

C...

C C C

A
cue

distractor

response

time

?

...
 ta

sk
 c

on
tin

ue
scue delay

cue

delay

Mendoza-Halliday et al. (2014)
Macaque MST

a b

c d

delay

across the
population...

pref. direction change

pref. dir.
change

Figure 1: (a) Sensory-memory interference in the real world,
at the airport. We see our gate assignment, C, and then can
keep this in memory even as we see other gates on our search
through the airport. (b) The distractor task. A cue is shown
and after a variable time interval a distractor is shown. The
goal of this task is to produce a response at the initial input
direction while ignoring the distractor. (c) Neurons from the
macaque brain area MST invert their tuning preferences over
time between the cue and delay periods. The firing rate of a
single neuron is shown here for four cue directions, along with
tuning curves during cue and delay periods. (d) Preference
changes for the entire population of MST neurons.

first stimulus and ignore a subsequently presented distractor.
To better understand the underlying computations required to
overcome the problem of sensory-memory interference we
trained, examined, and eventually were able to hand-design
recurrent neural networks (RNNs) to solve this problem (Fig-
ure 2a-d). The dynamics of the simulated neurons were gov-
erned by the standard continuous-time RNN equation that has
previously been used to model neural responses (Mante* et
al., 2013; Sussillo et al., 2015).

We looked for ways of experimentally differentiating be-
tween these solutions and found that in the delay period be-
tween the cue and distractor, our models made distinct predic-
tions for the dynamics of neurons’ preferred directions (Fig-
ure 2e-h). Notably, some networks used a dynamic coding
scheme such that cells changed their tuning to prevent the
new sensory input from overwriting the previously stored one.

To see if any of these potential mechanisms might be em-
ployed by the brain, we analyzed neural recordings from two
experiments on nonhuman primates (Mendoza-Halliday et al.,
2014, 2024). In particular, we focused on area medial su-
perior temporal (MST) because MST is uniquely situated be-
tween sensory and memory regions, and is the first area along
the dorsal pathway to show sustained working memory ac-
tivity (Mendoza-Halliday et al., 2014). MST may be uniquely
positioned to confront the problem of sensory-memory inter-
ference, and intriguingly displays the same dynamic tuning



patterns as some of our models (Figure 1c-d). Notably, our
hypothesis is that even in tasks that do not explicitly contain a
distractor, the brain may still “hide” memories in anticipation of
future inputs.

We compared the firing rates of the models during the cue
and delay periods to the two neural datasets from MST using
the Procrustes distance metric (Williams et al., 2021; F. Ding
et al., 2021) after concatenating the average activity from the
cue and delay periods for every value of the cued stimulus. We
found that one solution to the problem of sensory-memory in-
terference is near the noise floor for one of the datasets, and is
the best model for the other dataset as well (Figure 3a-c). This
model also has behavioral signatures consistent with the mon-

key behavior reported by Suzuki & Gottlieb (2013), in contrast
to a standard ring attractor model that strongly alters mem-
ories of recent stimuli with subsequent inputs (Figure 3d-e).
Taken together, our results help elucidate how recurrent neu-
ral networks are able to solve the problem of sensory-memory
interference by leveraging both static and dynamic codes,
and bridges scales from behavior to neural firing patterns to
synaptic connectivity. Intriguingly, our work also suggests that,
even beyond the specific context of sensory-memory interfer-
ence, the dynamic neural codes seen in the brain may enable
information to effectively “hide” from being overwritten. Finally,
we propose a new role for area MST in overcoming sensory-
memory interference.
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Figure 2: Different solutions lead to distinct experimental predictions about the connectivity between neurons, and how the
preferred directions change between the time of the initial cue and the subsequent delay period. Hand-designed RNNs im-
plementing (a) Gating, (b) Strong Attractor, (c) Reshuffle of Tuning, and (d) Inversion of Tuning. (e-h) Histogram of neurons’
absolute preferred direction changes, as predicted by the corresponding model. (i) The sensory-memory interference problem
can be overcome by interpolating between solution mechanisms.
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Figure 3: (a) The solution space of models and data is visualized using the t-SNE algorithm on the firing rates of neurons in the
cue and delay periods. Every point represents a model network or neural dataset. (b, c) Procrustes distance between the models
and neural responses from macaque brain area MST (Mendoza-Halliday et al., 2014, 2024). Across both experiments, neural
data from MST is most aligned with the Gating + Inversion of Tuning mechanism. Error bars indicate the standard deviation.
(d) Behavioral data (error rates) on the distractor task for a standard ring attractor network, which is not robust to the distractor,
and the Gating + Inversion of Tuning RNN, which is similar to monkey behavior. To compare with monkey behavior from Suzuki
& Gottlieb (2013) the distractor can either be similar (near) to the initial cue stimulus (45◦away) or far (135◦/180◦away). (e)
Corresponding behavioral results from two monkeys (Suzuki & Gottlieb, 2013).
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