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ABSTRACT
Humans can infer the 3D shape of objects from a single
image. Computational methods in the neurosciences fail
to adequately model this ability. Recently, ‘generative’
machine learning methods have emerged as a promis-
ing approach to modeling the geometric properties of ob-
jects. Here we develop a framework to evaluate the per-
ceptual alignment between these generative models and
humans on 3D visual tasks. Given a set of experimen-
tal images (e.g., four images within an ‘oddity’ trial), we
use an image-conditioned generative model to infer ob-
ject properties, including 3D shape. We then estimate
relative viewpoints (i.e., camera positions relative to ob-
jects) across images. With these inferred object and view-
point latents, we determine the similarity between objects
within a trial, using an image generation procedure analo-
gous to mental rotation. We evaluate how well a single in-
stance of this generative model class, Large Reconstruc-
tion Model (LRM), predicts human behavior. We find that
LRM does not achieve human-level performance on 3D
visual inferences. Nonetheless, our approach provides
an extensible framework to evaluate the perceptual align-
ment between humans and generative visual models.
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INTRODUCTION
Given a single image, humans can infer the shape of ob-
jects. Many theories have been proposed to account for this
ability (Marr, 2010; Ullman, 1979; Koenderink, Van Doorn, &
Kappers, 1992). To formalize these accounts, computational
neuroscience has increasingly adopted ‘stimulus-computable’
models, which are able to predict both neural responses
and behaviors, directly from experimental images. However,
standard computational models, such as convolutional neu-
ral networks (CNNs) trained on Imagenet, systematically fail
to achieve human-level performance on 3D shape inferences
(Abbas & Deny, 2023; Alcorn et al., 2019). Recently, a novel
class of ‘generative’ visual models have been used to produce
images that seem consistent with human perceptual expec-
tations, but there have not been quantitative evaluations of
human-model alignment on 3D perceptual inferences. Eval-
uating this alignment requires novel analytic methods; while
discriminative models can generate representations and be-
haviors conditioned on experimental stimuli, generative mod-
els often generate images, conditioned on some other input.
These models can be adapted to address experimental ques-
tions (Jaini, Clark, & Geirhos, 2023), but no method has been

proposed to evaluate human-model consistency in 3D shape
inferences. Here we develop a framework to evaluate the per-
ceptual alignment between generative visual models and hu-
man observers. Our approach is simple: instead of analyzing
model responses to experimental images directly, we analyze
the images rendered by these generative models, which are
conditioned on experimental images. That is, given an exper-
imental stimulus that contains an object, we generate images
of this object rendered from novel viewpoints. To adapt this for
3D experiments, we visualize the object from each image from
the viewpoints of other images, analogous to ‘mental rotation’
(Shepard & Metzler, 1971). We leverage this approach to
evaluate a (publicly available) generative visual model: large
reconstruction model (LRM, (Hong et al., 2023)). We use a
dataset from Bonnen, Yamins, and Wagner (2021) where hu-
mans substantively outperform standard deep learning meth-
ods on 3D inferences; for conditions that rely on texture-level
image properties, standard deep learning models (e.g., vs.
DINOv2, resnet50) perform as well as humans, while they are
at chance on conditions that rely on 3D shape inferences. As
such, this dataset provides baselines for both model perfor-
mance and human abilities (Table 1).

Semantic
3D

Abstract
3D

Semantic
Texture

Abstract
Texture

Human .85 .82 .90 .93
DINOv2 .34 .29 .89 .89

Table 1: Comparison between human and model performance
on a 4-way ‘oddity’ task using stimuli from Bonnen et al. (2021)

RESULTS
Formulation. “Oddity” tasks are a common design used to
evaluate human 3D shape perception: several images are
presented simultaneously, from different viewpoints, and par-
ticipants determine which image contains the object which is
least like the others (see examples in Fig. 1). To evaluate
generative visual models using this design, we begin with the
observation that images can be decomposed into object-level
properties (such as shape, texture) and camera properties
(such as position and rotation). If these object and camera
properties can be estimated, it is possible to determine the
similarity between those objects in the following manner. First,
the object from image j can be rendered using the camera
properties of imagei (i.e., distance, rotation, position), creat-
ing a novel image; intuitively, this can be thought of as a men-
tal rotation; then, we can determine the similarity between the
original image j and the rendered image, using a suitable met-



ric, such as l2 distance over pixels or similarity between fea-
tures of a neural network. Given a set of experimental images
image0−N in a single trial, we can infer the underlying object
and viewpoints in each image (e.g., object0 and viewpoint0
from image0), render this object from the viewpoints of other
images (e.g., object0 from viewpoint1) and compare to the ref-
erence object in that image (e.g., object1 from viewpoint1).
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Figure 1: Example trials. Original images at top and on diag-
onal; renders of objects from novel viewpoints off diagonal.

Implementation. Using the formulation outlined above, we
model four stimulus conditions from Bonnen et al. (2021).
For each trial, we infer object-level properties of each image
independently, using an open-source implementation (He &
Wang, 2023) of Large Reconstruction Model (LRM; Hong et
al. (2023)). We estimate the relative viewpoints between pairs
of images via an exhaustive search: given the object latents
inferred from image0 using LRM, we render images of object0
sampled uniformly from a sphere of fixed radius, searching
for camera coordinates that minimize the distance between
this rendered image and ground truth (e.g., between object0
from viewpoint1 and object1 from viewpoint1). We refine our
grid search over 3 iterations, such that each iteration more
densely samples from the region which contained the view-
point with the highest similarity between the rendered image
and the reference image. We determine image similarity us-
ing several metrics: L2 over pixels, cosine similarity of deep
features from CLIP and DINOv2, and LPIPS (Zhang, Isola,
Efros, Shechtman, & Wang, 2018). This procedure with each
trial yields a 4x4 matrix of images which we visualize in Fig.
1: each row corresponds to a model inferred from one of four
reference images, while each column corresponds to the view-
point inferred from those same reference images. The diago-
nal contains a model rendered from the original image it was

inferred from (e.g., model0 inferred from image0), while the
off-diagonal contains images of each model rendered from the
viewpoint of other images (e.g., model0 inferred from image1).

Evaluation. We compare the accuracy of LRM to human
performance and a suitable computational baseline. Given
that the base encoder to LRM is a powerful visual backbone
(DINOv2), we take the baseline performance to be the accu-
racy of DINOv2 on the original trial images; for each trial, we
pass all 4 images to the encoder, extract features from the
last pool layer, compute the pairwise correlation between fea-
tures from each image, and determine the oddity to be the
item with the lowest mean off-diagonal correlation. For the
LRM-based modeling results, we modify this analysis method,
computing the correlation not between the original images, but
between the rendered images and the reference images (e.g.,
the correlation between model0 rendered from the viewpoint
in image1 and the reference image, which is model1 rendered
from viewpoint1). We again determine the object with the low-
est correlation to the other objects as the model-selected odd-
ity. Again we use several perceptual metrics (l2 over images,
DINOv2 and CLIP features, and lpips). For all comparisons,
we average across trials within each of four conditions. As
expected, for the two conditions where DINO features perform
well, so too does our generative modeling approach. However,
these our LRM-based modeling approach does not achieve
human-level performance on trials, failing exactly where the
original DINO features do (Fig. 2, left). More concretely, our
LRM-based modeling approach was able to achieve human-
level performance on conditions that rely on texture-level prop-
erties of objects, the same stimuli where DINO features per-
form well, but not on those conditions that require 3D shape
inferences. Notably, we find that these results are consistent
across the different perceptual metrics used to estimate the
relative viewpoints and determine the oddity in each trial (Fig.
2, right). These data suggest that objects generated using
LRM are not well aligned with human inferences of 3D shape.
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Figure 2: A generative model, LRM, (green) is not able to
match human 3D visual inferences (purple; left), regardless
of the perceptual metric (L2, lpips, and DINOv2, CLIP; right).

CONCLUSION
We developed a framework to evaluate the perceptual align-
ment between humans and generative visual models. An
image-conditioned generative model, LRM, is not able to
achieve human-level performance on 3D shape inferences.
Our extensible approach will be useful for evaluating the align-



ment between humans and future generative visual models.
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