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Abstract
While foveated vision, a trait shared by many animals in-
cluding humans, is a major contributor to biological vi-
sual performance, it has been underutilized in machine
learning applications. This study investigates whether
retinotopic mapping, a critical component of foveated vi-
sion, can enhance image categorization and localization
performance when integrated into deep convolutional
neural networks (CNN’s). Retinotopic mapping was used
to transform the inputs of standard off-the-shelf CNN’s
which were then retrained on the Imagenet task. Sur-
prisingly, the networks with retinotopically-mapped in-
puts achieved a comparable performance in classifica-
tion. Furthermore, the networks demonstrated improved
classification localization when the foveated center of the
transform was moved on the whole image. This replicates
a crucial ability of the human visual system that is ab-
sent in typical CNN’s. These findings suggest that retino-
topic mapping may be fundamental to significant preat-
tentive visual processes, in particular the retinotopic ver-
sion seems to be the best option when applying one of
these networks to a visual search task.
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Introduction
The visual system in humans and many mammals is charac-
terized by a substantial resolution disparity between the cen-
tral area of the visual field (fovea) and the peripheral regions,
where the number of photoreceptors decreases exponentially
with eccentricity (Polyak, 1941). This particular topographic
arrangement, which transform the spatial relationships of vi-
sual inputs, is a fundamental component of processing in
species such as carnivores or primates (Kaas, 1997), sug-
gesting that they confer evolutionary advantages. Indeed in
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Figure 1: (A), the input image is defined as a regular grid rep-
resenting the cartesian coordinates (x, y) by vertical (red) and
horizontal (blue) lines. As shown in (D), by applying the log-
polar transform to this image, the coordinates of each pixel
with respect to the fixation point are transformed based on its
azimuth angle θ (abscissa) and the logarithm of its eccentric-
ity ρ = log(

√
x2 + y2) (ordinates). When the transformation is

applied to a natural image, as shown in (B), there is a notice-
able compression of information in the periphery, as shown in
(E). As shown in (F), this representation is highly dependent
on the fixation point, as indicated by the shift shown in (C)
when the fixation point is moved to the right and down.

the visual search task, that consists of finding an object of in-
terest in a visual scene, the fovea is associated with a set of
oculomotor behaviors aimed at positioning objects of interest
at the center of the retina maximizing access to visual infor-
mation for those objects. Here, we propose to take advantage
of this biologically inspired pre-processing approach, we hy-
pothesize that this biological mapping will improve the perfor-
mances of CNN’s in visual search tasks.
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Figure 2: Accuracy maps computed on a sample from the
Imagenet data set, using a Resnet101 networks trained and
tested either A on regular images or B on images mapped on
the retinotopic space using a log-polar grid. Red predicts the
presence of the label : ”leopard”, blue its absence. Point of
view corresponding to the maximum activation of the map in
the cartesian C or retinotopic D referential.

Methods
Retinotopy and Transfer Learning
We implement retinotopic mapping with the well known log-
polar referential (Araujo & Dias, 1997). By applying a trans-
formation from the regular cartesian pixel grid to a log-polar
grid (see Figure 1). We choose transfer learning (Mari, 2020)
to retrain two version of state-of-the-art CNN’s Resnet50 and
Resnet101 (He, Zhang, Ren, & Sun, 2015). In order to initi-
ate those networks for the visual search task, we generated a
data set of fixation point defined as the center of the bounding
box of the label of interest from the Imagenet (Russakovsky et
al., 2015) data set. This new dataset was then used to train
both retinotopic and cartesian networks. Networks then are
tested for localization against the original Imagenet dataset.

Likelihood map protocol
We sub sampled each image with a grid of equidistant view-
points at a resolution of 11 × 11. At each viewpoint, the
largest possible sample is cropped. Thus a minimum size of
224× 224 at the border and the whole image at the center.
From the cartesian or retinotopic reference frame, this sample
is then resized to a 224×224 resolution to match the optimal
size for the CNN before processing. We selected some key
metrics to compare the retinotopic or cartesian referential. An
indicator of the correct map activation position is the Energy-
Based Pointing Game accuracy (Selvaraju et al., 2019) where
the localization is a success when the peak activation of the
heat map of a given label is located inside the ground true box.
In addition, we chose to track the ratio of the activation inside
to outside the box, the higher, the greater is the contrast of the
heat map.

Table 1: Accuracy and mean activation ratio over the Imagenet
validation data set. A saccade correspond to the selection
of another fixation point in the grid. Before the saccade the
networks process the whole image.

RESNET50 RESNET101
Cartesian Retinotopic Cartesian Retinotopic

Ratio Activation 1.33 1.45 1.23 1.41
Pointing Game 0.47 0.60 0.41 0.58
Before saccade 0.67 0.68 0.70 0.71

Saccade no prior 0.65 0.69 0.64 0.71
Saccade prior 0.93 0.94 0.94 0.95

Results

Accuracy maps as a proxy for saliency

Compared to the accuracy map generated with images in
cartesian space (see Figure 2-A & B), the accuracy maps in
retinotopic space provide a more focused localization of the
object of interest. Although the leopard’s position is clearly
visible on both maps, the retinotopic version is less noisy than
the cartesian version. This is highlighted Figure 2-C & 2-D,
where we can see that the maximum activation corresponds to
the leopard in the retinotopic version. However, when compar-
ing metrics, whether in terms of positioning with the pointing
game, or response contrast with the ratio of activation, net-
works exploiting the properties of the retinotopic space out-
perform those in cartesian space. Surprisingly Resnet50 tend
to perform better then Resnet101 on these indicators.

Visual search task

Here we compared the average network accuracy as a func-
tion of the fixation point. By selecting the fixation point (sac-
cade), either the most salient to the target label (’priors’) or
the most salient independent to the target label (’no priors’).
The results indicate that networks using the retinotopic refer-
ence frame appear to maximize prediction after moving the
fixation point, as the mean accuracy is better in this test. Note
that since the networks are trained on the boxes, their pre-
saccadic acuity is a test in itself, as they are presented with
the full image. Although cartesian networks perform better in
validation during training, they lose their advantage on the full
image.

Conclusion

In this study, we have shown promising computational results
for the localization of visual objects, In particular, it shows that
we can use a network retrained with a retinotopic map with
high information compression in the periphery to perform cat-
egorization and localization tasks. Finally, the implementation
of this refined localization of a label of interest could allow us to
extend this study to a more complex task (i.e.,visual search),
the accuracy maps could provide the underlying pre-attentive
mechanisms on which its effectiveness seems to depend and
that can be compared with physiological data (Crouzet, 2011).
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