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Abstract: 

Learning to structure incoming sensory input is crucial 
to build an appropriate mental model of one’s 
environment. An abundant literature has shown that, 
when faced with sequences of stimuli, humans can 
accumulate sensory evidence, learn statistical 
dependencies between consecutive or non-consecutive 
elements, or even find abstract rules in an efficient 
fashion. However, although each system has been tested 
using ad-hoc paradigms, we lack theory and data on how 
these abilities might articulate with each other. While 
recent work has begun to investigate the relationship 
between statistical inference and rule learning, here we 
propose an experimental framework to jointly investigate 
evidence accumulation and rule learning in the same 
sensory prediction task. To do so, we presented 
participants with sequences of 10 Gabor patterns whose 
orientations could or could not follow a hidden rule in the 
form of a +45° switch in the middle of the sequence. 
Participants were always asked to estimate the angle of 
the last (10th) element in the sequence, while the 
presentation stopped after 3, 5, 7 or 9 elements, forcing 
them to make predictions more or less deep into the 
future. Computational modeling shows that this design 
correctly separates different inference strategies, 
making different assumptions about the interactions 
between evidence accumulation and rule learning. Pilot 
data suggests that human behavior in this task has the 
required diversity to investigate this question.  

Introduction 

Humans are facing a complex, yet highly organized sensory 
environment from which they learn to extract many relevant 
information. Three main types of learning in sequences have 
been studied: perceptual accumulation of evidence from 
repeated noisy sensory stimuli (Morillon et al., 2014; Wyart 
et al., 2012), learning statistical properties between 
consecutive elements (Saffran et al., 1996) or high-order 
statistical structure of the sequence (Benjamin et al., 2024), 
and learning rules where the temporal order of the elements 
follow a deterministic pattern that can be compressed in a 
language like manner (Al Roumi et al., 2021; Quilty-Dunn et 
al., 2022). In most studies, these learning capacities are 
described as relying on different cognitive and neural 
mechanisms (for counterpoint see Fiser & Lengyel, 2022), 
but they have rarely been studied conjointly, resulting in a 
lack of theory and data on how they articulate to form a 
comprehensive learning system.  
Recent work started to investigate this question by presenting 
sequences with both statistical properties and rules (Maheu et 
al., 2020) and showed a discrete arbitration between those 
two systems. However, to our knowledge no studies have 
addressed the question of simultaneous perceptual 
accumulation of evidence and rule learning. In fact, 
investigating both learning mechanisms simultaneously is not 
trivial given the differences in paradigms used in those two 
literatures: perceptual learning is often studied with 
ambiguous, noisy, heterogeneous stimuli, whereas rules are 

learnt in paradigm with discrete, prototypical categories of 
stimuli. Here we aim at mixing both approaches by 
presenting participants with sequences following a rule 
AAAAABBBBB but where A and B are not discrete 
categories, but probability distributions with significant 
overlap. 
We hypothesize that, on the one hand, evidence accumulation 
properties could influence rule learning. Indeed, a high level 
of overlap between categories, and of internal noise during 
inferences (Drugowitsch et al., 2016) could prevent 
participants from differentiating between categories A and B, 
thus preventing them from finding the rule. On the other 
hand, the discovery of the rule could radically alter the way 
in which items are accumulated. Another hypothesis being 
that the discovery of the rule does not modify the evidence 
accumulation system itself, but only participants' subsequent 
response selection. Computational modeling will allow 
testing and differentiating these distinct hypotheses.  
 

Method & Results  

Method 

Experimental Paradigm In this task, participants must 
always estimate the angle of the last element of a sequence of 
10 Gabor patches. The experiment consists two different 
types of blocks: in stay blocks (blue), each element of the 
sequence is drawn from a normal distribution around a 
random target with a std of 10°. In switch blocks (purple), we 
added a +45° rotation from the middle of the sequences. In 
other words, the last five elements were drawn from the +45°-
shifted distribution compared to the five firsts. In each block, 
after the presentation of 6 full sequences, participants were 
presented with incomplete sequences, stopping after 3, 5, 7 
or 9 elements, and had to estimate the angle of the last one by 
rotating a bar, and click on their confidence level. After each 
trial, they saw feedback with the answer. They performed a 
total of 240 trials (30 in each condition). 
 
Preliminary data  A group of n=15 (8f, 𝑎𝑔𝑒$$$$$ 	= 	27.6	𝑦𝑜) 
pilot subjects performed the behavioral task at the lab and 
answered a questionnaire indicating what they thought the 
structure of the switch sequences was. We separated subjects 
in two groups based on the questionnaire answer: 4 subjects 
explicitly described the switching rule, while the other 11 
were unable to report any significant rule. For both groups, 
we computed the distribution of the difference between the 
given answer and the average angle of the first part of the 
sequence. We fitted von Mises distribution to estimate the 
location (𝜃) and concentration (𝜅) of these angular 
differences for each condition and assessed between group 
significance using bootstrap replacement method between 
trials. 



Computational modeling  Each concentration 𝜅 could be 
decomposed in terms of inference noise and response noise. 
We performed a parameter recovery analysis to estimate how 
distinguishable those two sources of variability are with our 
design.  Moreover, we distinguish three assumptions about 
participants' behavior: 1. Because of too high inference noise, 
participants are unable to distinguish A from B categories and 
thus ignore the rule in their responses 2. Participants used the 
rule to apply an offset to each given item during the inference 
computation 3. Participants only use their evidence 
accumulation system, and latter apply an offset to their 
response, when necessary. These three strategies reflect three 
different assumptions about how perceptual learning and rule 
learning can interact. We have modeled these three strategies 
and performed model recovery and parameter recovery 
analysis.  
 

Figure 1: Experimental framework. A. Participants are 
presented with two types of blocks :‘stay’, in blue where the 
angle of each element is drawn from a normal distribution 
around the target, and ‘switch’ sequences, in purple, where 
the five last elements are +45° shifted B. After 6 training 
sequences at the beginning of each of the 12 blocks, subjects 
are presented with incomplete sequences stopping after 3, 5, 
7 or 9 elements and asked to estimate the angle of the last 
item. 

Results 

Recovery analyses  We implemented our three models 
including two distinct sources of behavioral variability: 
inference noise and response noise. (Findling & Wyart, 
2021). We first checked that the two sources of variability 
could be reliably estimated by carrying out a recovery 
analysis of the noise parameters (inference noise correlation 
= 0.69, response noise correlation = 0.54). We then 
performed a model recovery analysis: we created 150 
synthetic subject data by simulating each model 50 times. We 
then fitted each data item to each of our three models and 
compared the best-fitting model to the model used for 
simulation. For all those synthetic subjects, the winning 
model corresponded correctly to the model used for the 
simulation, which shows that our three hypotheses are 
correctly dissociable with this paradigm. 

Behavioral analyses Our aim is to find a difficulty level 
where some participants will explicitly find the rule, while 
others will not. This intermediate difficulty would enable us 
to study which parameters of evidence accumulation can 
trigger or prevent rule learning. Preliminary data analysis 
showed that explicit learners were less noisy during evidence 
accumulation even in the absence of any rule (𝜅 is greater for 
those subjects in the Stay conditions n+1 and n+3). Moreover, 
they exhibited clearly dissociable response patterns in the 
Switch condition compared to non-explicit learners. This 
suggests that the task parameters are well suited to our needs. 
By fitting our models to human data, we found that the 
inference offset and response offset significantly differed 
between our two groups, correctly capturing their different 
behavior in the switch condition. Next steps include testing a 
full set of new subjects in the lab (n~30) and a large online 
dataset (n~150) to better cover the full range of possible 
strategies, and to fit their behavior using our three models.  

 

Figure 2: Pilot data: For each condition, we report the 
distribution of the differences between the answer and the 
first elements of the sequence. Subject are divided in two 
groups bases on their post-experiment questionnaire : n=4 
who explicitly found the hidden rule (green) and n=11 unable 
to describe the structure of the sequences (red). We observe 
difference in precision between both groups (𝜅 is greater for 
explicit learners in the stay conditions n+1 and n+3, and 
switch n+1) We also see separable response locations (𝜃) in 
the switch condition n+7 and n+5. Below each plot are the 
fit of von Mises parameters, significance is assessed using 
bootstrapping (*p<.05 **p<.01 ***p<.001).  

Conclusion 

Preliminary data and models suggest that this task is well 
suited to studying the interaction that might exist between 
evidence accumulation and rule learning during sensory 
predictions. We specifically hypothesize that this interaction 
occurs in both directions: inference noise during evidence 
accumulation impairs rule learning, whereas the discovery of 
abstract rules shapes how sensory inferences are made. 
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