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Abstract
Every day, humans flexibly make a broad range of de-
cisions, including choosing the item they like most or
least, or assigning a value to their option set as a whole.
We recently showed that a single sequential sampling
model could flexibly accommodate these and other types
of decisions. We developed a theoretical framework that
formalizes the necessary representations that align se-
quential sampling and evidence accumulation with one’s
current choice goals. We implemented this framework
within an extended leaky competing accumulator model
and showed that model simulations can parsimoniously
explain behavior across a range of different choice goals,
while also generating predictions for previously untested
choice goals. Here we test behavioral predictions of our
model and show that human behavior matches the pre-
dicted patterns.
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Introduction and Framework
Humans can flexibly adjust how they make decisions to
achieve even the most arbitrary goals. In isolation, sequen-
tial sampling models have been able to capture a wide va-
riety of decisions (Busemeyer, Gluth, Rieskamp, & Turner,
2019), including choosing the best among sets of options
(Thomas, Molter, & Krajbich, 2021), and assigning a rating
to options (Smith, 2016). Here, we test predictions of a
model that links research into the computational mechanisms
of decision-making with research into cognitive control to ex-
plain how humans can flexibly make any of those decisions
within the same cognitive architecture (Frömer, Gluth, & Shen-
hav, 2022).

Our framework integrates a sequential sampling process
into a cognitive control architecture that sets the parameters of
this process according to the decision-maker’s current choice
goal and the characteristics of the current decision (Fig. 1).
Parameters specify a) the relevant feature dimension upon
which to decide (e.g., size versus value), and how this prop-
erty translates into evidence for the b) current goal (e.g., find-
ing largest vs smallest) as well as c) the response structure
(e.g., discrete choices vs. ordinal ratings).

Model implementation and Simulations
We implemented this framework by extending a biologically
plausible sequential sampling model, the leaky competing ac-
cumulator model (LCA) (Usher & McClelland, 2001). In the
LCA, evidence at each time step t is accumulated as

At = At−1 +EI − kAt−1 −wWAt−1 + sN (1)

where A is the vector of response activations, I is an in-
put vector containing the evidence assigned to each response
via excitation matrix E, k is a leak parameter that scales how
much evidence is “forgotten”, w is a scalar on mutual inhibition

Figure 1: Flexible decision-making architecture. Control
mechanisms set the parameters on the embedded sequential
sampling process. These determine (a) which type of infor-
mation is selected (attention goal), (b) how this information is
transformed into evidence (transformation goal), and (c) how
the information is integrated to select a response (integration
goal).

W , and s is a scalar on normally distributed noise (N) for each
option.

Integrating evidence in accord with relevant outputs

In a typical value-based decision-making task, A and I are vec-
tors with each entry corresponding to one option. The excita-
tion matrix E ensures that the inputs in I are added to each ac-
cumulator independently. Since all options are equally mutu-
ally exclusive, the inhibition matrix W makes them inhibit each
other with a constant weight (Fig. 2 top). When appraising
one or multiple options (e.g., rating their value), responses do
not map onto concrete options (e.g., “choose the bottle”), but
onto discrete levels of the relevant dimension (e.g., “choose
the highest value level”). These levels (e.g., ratings) are not
independent; rather, neighboring levels are more similar than
levels that are farther apart. To account for this structure (Fig.
2 bottom) inputs I are determined by mapping samples for
each option onto the response space (e.g., 5 ordinal ratings)
and integrating across options. Evidence is added to all ac-
cumulators proportional to their distance from the input (e.g.,
rating 2 evidence also activates rating 1 and 3 via E), and
mutual inhibition increases with response distance (via W ).

Our simulations of choices and appraisals capture canoni-
cal behavioral findings: Choices are faster and more consis-
tent as the value difference between options increases, and
response times further decrease as the overall value of op-
tions increases. Appraisal ratings increase with the overall
value of the set (Frömer, Dean Wolf, & Shenhav, 2019; Shen-
hav & Karmarkar, 2019), and response times are faster when
giving an appraisal rating closer to the extremes rather than
the center of the scale (Lebreton, Abitbol, Daunizeau, & Pes-



Figure 2: Reconfiguration of the accumulator structure
flexibly affords choice and appraisal of the same options.

siglione, 2015; Shenhav & Karmarkar, 2019).

Transforming sampled values into suitable inputs

We frequently need to select options other than the best,
i.e. the smallest item or one that has exactly the right
size (or value). When participants choose the worst instead
of the best item, the typical response speeding influence
of overall value reverses (Frömer et al., 2019). A hidden
layer in which value information (vi) is transformed into goal-
dependent evidence (ii) can parsimoniously reproduce be-
havior in best/worst choice, and combined with the above
changes to integration, generate novel behavioral predictions
for liking vs disliking appraisals (Fig. 3 left).

Our simulations reproduce our previous findings for
best/worst choice and show that our same architecture can
generate goal-congruent appraisal ratings (Fig. 3). Since
choice RTs speed up with increasing magnitude of the inputs
(Frömer et al., 2019), their relationship with overall value re-
verses as the goal changes from choosing the best to choos-
ing the worst. However, appraisals are more sensitive to the
consistency of the input (Lebreton et al., 2015). Since invert-
ing the appraisal goal does not change this consistency, our
model predicts that this goal manipulation should not affect
appraisal RTs.

Empirical findings match model predictions
To test these predictions, we had 44 participants (37 female,
Mage = 24, SDage = 4) choose or appraise option sets under
different transformation goals. Participants were familiarized
with the items, then rated them in isolation. Based on these
ratings, choice sets were generated to vary in overall value
and value difference. The same options were shown twice,
once in a choice condition, once in an appraisal condition.
Participants used e, f, j, and i keys on a standard keyboard
to either choose the option on the screen (positions were
matched to key locations) or rate the options on the relevant
scale using the keys from left to right. The 4 blocks (choose
best, choose worst, appraise liking, appraise disliking) were

counterbalanced across participants and participants prac-
ticed the respective button mapping before each block. Partic-
ipants performed up to 60 trials per block, depending on how
many choices sets could be generated based on their ratings
(mintotaltrials = 120, mediantotaltrials = 208, SDtotaltrials=24).

Consistent with model predictions, we found dissociable be-
havioral patterns across the four conditions. The probability of
choosing the most goal-congruent options increased with the
difference between the most congruent option’s value and the
average remaining option values (value difference, b = 0.33,
p < .001), and participants were similarly accurate across
’choose best’ and ’choose worst’, and across the range of
overall value (ps > .1). When participants appraised liking,
ratings increased with increasing overall value, (b = 0.26, p
< .001) and consistent with our model predictions, this effect
reversed when participants appraised disliking (p = -0.26, p
< .001). Importantly, we found the expected dissociable ef-
fects of transformation goals on RT. As in our previous stud-
ies, participants responses speeded up with increasing over-
all value when choosing the best option, and slowed down
when choosing the worst options, with a significant interaction
of goal and overall value, b = -0.08, p < .001. In contrast, and
as predicted by our model, appraisal RT showed a quadratic
effect of overall value on RT (b = -0.01, p < .001), that did not
significantly vary by condition (b = -0.00, p = .118). We also
found that participants were significantly slower when either
choosing (b = -0.05, p = .003) or appraising (b = -0.06, p =
.010) under a negative frame (worst, disliking). This finding,
which is not currently accounted for by our model, could re-
flect additional inputs on action selection, for instance from a
Pavlovian system that facilitates approach towards rewards.

Figure 3: Transformation goals shape behavior. Our model
predicts that transformation goals have dissociable effects on
choice RTs compared to appraisal RTs. Our empirical results
show the predicted pattern.

Conclusion
Our model integrates insights from cognitive control with a
biologically inspired computational model of decision-making
to accommodate a range of different decisions. It offers in-
sights into how humans flexibly align how they decide to reach
their current goals and generates testable predictions for novel
goals.
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