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Abstract
Healthy humans depend on their ability to track objects while
they move through the world even as they change in appear-
ance. Here, we introduce the FeatureTracker challenge to
systematically evaluate and compare the abilities of humans
and state-of-the-art deep neural networks (DNNs) to track ob-
jects that change in appearance over time. While humans
can effortlessly solve this task, DNNs cannot. Drawing inspi-
ration from cognitive science and neuroscience, we describe
a novel recurrent neural circuit that can induce this tracking
capability in DNNs by leveraging the oscillatory activity of its
neurons to follow objects even as their appearances change.
The resulting complex-valued recurrent neural network (CV-
RNN) outperformed all other DNNs and approached human
accuracy on the FeatureTracker challenge. The success of
this novel neural circuit provides computational evidence for
a long-hypothesized role of phase synchronization for visual
attention and reasoning.
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Introduction
Human observers find it effortless to track objects in their sur-
roundings even as they change in appearance or state over
time (Corbetta et al., 1990; Blaser et al., 2000). For exam-
ple, when preparing a meal, we have no trouble tracking in-
gredients even as chopping and cooking them changes their
shapes, sizes, colors, and textures. Converging lines of re-
search in cognitive science and neuroscience have made it
clear that humans rely on at least three distinct strategies
to track objects, each of which can be flexibly selected and
combined based on task demands. (i) Humans can recog-
nize objects by “re-identifying” them over time (DiCarlo et al.,
2012; Jia et al., 2021). (ii) It has also been known for many
decades that biological visual systems — including those of
humans — are exquisitely sensitive to the motion of objects,
and this resource can be used for tracking (Cavanagh, 1992).
(iii) Humans can also track objects by following their feature
dynamics, or the rate of change of specific visual features
over time. This strategy was demonstrated through a psy-
chophysics paradigm depicted in Blaser et al. (2000): hu-
mans could track one target Gabor overlaid with a distrac-
tor Gabor, as both smoothly changed in spatial frequency,
color, and orientation over time. While there has been ex-
tensive progress made in identifying mechanisms underlying
human object tracking by re-recognition and/or motion (Jia et
al., 2021; Linsley et al., 2021), and extending those mech-
anisms into modern deep learning-based systems for object

tracking (Chen et al., 2022, 2021; Linsley et al., 2021), there
is still little known about how humans track objects by their fea-
ture dynamics. What neural mechanisms support this object-
tracking strategy?

Method and Results
The FeatureTracker challenge. We began by developing a
large-scale synthetic challenge that could be used to test the
abilities of human and machine observers to track objects by
their feature dynamics. Our FeatureTracker challenge does
this by asking observers to determine if an object that be-
gins in a red square travels to the blue square by the end
of the video (Fig. 1A). Our challenge is built on an earlier
one that tested the abilities of humans and machines to track
objects in videos as they cross and occlude the view of each
other (Linsley et al., 2021). Inspired by seminal psychophysics
work (Blaser et al., 2000), we extended this earlier challenge
by causing the objects in each video to change in appearance
over time. We reasoned that such regularities in feature dy-
namics would make the task of object tracking easier for those
observers who could leverage them.

Each video in the FeatureTracker challenge consists of a
sequence of 32 frames that are 32 × 32 pixels, depicting a
red “start” square, a blue “goal” square, and 11 objects, one
of which begins each video in the red square and is meant to
be tracked. As the objects move over the course of the video,
their shapes, colors, or shapes and colors change. By hold-
ing out regions of color and shape space for training versus
testing, we first trained observers on feature variations, then
tested the extent to which they could leverage an object’s fea-
ture dynamics to track it.

The challenge begins with a training phase of videos, where
the observer is trained on videos in which the colors and
shapes of objects are drawn from half of the total range of val-
ues that these can take (Fig. 1A, first row of examples). DNNs
are trained on 100,000 videos, while humans are trained on
just 20. Next, the observer is tested on versions of the task
where object shapes and colors are drawn from the same
or different ranges as those seen during training (Fig. 1A,
second-fourth row of examples). The ability to track objects
by their feature dynamics would support high performance re-
gardless of the manipulation that occurs during test time, and
a failure to generalize means that an observer did not learn to
implement the appropriate tracking strategy.

While humans achieved high performance on every ver-
sion of the FeatureTracker challenge, state-of-the-art DNNs
(trained using a BCE loss) were far less successful (Fig. 1B).



Figure 1: (A) Inspired by Blaser et al. (2000), we develop a large-scale synthetic object tracking challenge that we call Feature-
Tracker. The goal of FeatureTracker is to watch a video and say if the object that begins in the red square travels to the blue
square by the end of the video. The task is difficult because (i) objects occlude each other over time, and (ii) the appearances
of each object also change over time in prescribed ways. Specifically, humans and models are trained on videos where the
shapes and colors of objects vary within prescribed ranges and then tested on versions where shapes and colors vary within
the same or different ranges (middle column; each row depicts a distinct testing condition). (B) Humans and recurrent neural
networks (the proposed complex-valued recurrent neural circuit, CV-RNN, and a real-valued version of the same model, RNN)
rival human accuracy when tested on shapes/colors that vary in the same range as those seen during training (first row of A)
or shapes that are distinct from those seen during training (third row of A). However, only the CV-RNN comes close to human
performance when tested on versions of FeatureTracker where colors vary in different ranges than those seen during training
(second and fourth row of A). Models tested also include 3D convolutional neural networks (3D CNNs) and Transformers. 3D
CNNs and Transformers pre-trained on natural videos are denoted with darker bars.

An RNN with attention (Linsley et al., 2021) and multiple 3D
Convolutional Neural Networks (3D CNNs) rivaled human per-
formance when tested on objects that had similar appear-
ances as seen during training (left corner). However, each
model fell to chance when they were asked to track objects
with features (mainly colors) that were dissimilar to training.

Phase synchrony supports object tracking by feature dy-
namics. We hypothesized that the failure of existing mod-
els at solving the FeatureTracker challenge stems from inter-
ference in their feature representations. Specifically, models
are unable to separately represent information about an ob-
ject’s appearance and its position over time. Evidence from
neuroscience has implied neural oscillations as a mechanism
for multiplexing different sources of information, with mini-
mal interference, within the same neuronal population (Stern-
shein et al., 2011; Drew et al., 2009). These findings are
strongly related to the role of phase synchronization in percep-
tual grouping (Woelbern et al., 2002; Elliott & Müller, 2001),
suggesting a global key mechanism linking object-based at-
tention and phase synchronization. Inspired by this body of
research, we developed a novel attentional mechanism that
could model neural oscillations, and use them to solve the
FeatureTracker challenge. Specifically, we modified the atten-
tion head of an existing RNN for object tracking, the Index-

and-Track RNN (Linsley et al., 2021), giving it the capacity to
use the phase information of its complex-valued activity to en-
code object positions (agnostic to color and shape), and am-
plitude to encode object appearance (color and shape). These
modifications simply consisted of transferring the existing op-
erations from the real to the complex domain, following the
framework proposed by Reichert & Serre (2013). Our result-
ing model, the Complex-Valued RNN (CV-RNN) was signifi-
cantly better than the other DNNs on each condition of the
FeatureTracker challenge.

Conclusion

Humans have an extraordinary ability to track objects through
the world even as they change in appearance, state, or visi-
bility through occlusion. Our results imply that oscillations act
as a key mechanism underlying this ability and that inducing
DNNs with this capability can help them behave more like hu-
mans.
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