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Abstract
Cochlear implants (CIs) allow deaf individuals to hear by
electrically stimulating the auditory nerve, bypassing the
ear. CIs are one of the great successes of biomedical
engineering, but nonetheless fail to restore normal audi-
tory perception. Models that can predict behavioral out-
comes given CI input could help diagnose the factors lim-
iting perception and thus guide device improvements. We
first built a model of normal hearing by optimizing a deep
neural network to perform real-world auditory tasks using
simulated auditory nerve input from an intact cochlea. We
then modeled CI hearing by testing this model on simu-
lated auditory nerve responses to CI stimulation. To sim-
ulate possible consequences of learning to hear through
a CI, we re-optimized the network on CI input. When
the entire network was reoptimized, the model exhibited
speech intelligibility scores significantly better than typ-
ical CI users. Speech recognition on par with typical CI
users was achieved only when just the late stages of
the model were reoptimized. However, sound localiza-
tion performance remained abnormal relative to normal
hearing even when the entire network was reoptimized
for CI input. The results suggest that some limitations of
CIs reflect impoverished peripheral information from po-
tentially suboptimal stimulation strategies, but that other
limitations may reflect incomplete central plasticity.
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Introduction
Cochlear Implants (CIs) convert sound into electrical stim-
ulation that evokes responses in auditory nerve fibers, en-
abling sound perception in people with sensorineural hearing
loss. Despite their success in improving speech understand-
ing, current CIs fail to restore fully normal hearing perception
(Zeng, 2022). These shortcomings could arise from the de-
vices (e.g., suboptimal strategies for processing sound and
delivering electrical stimulation), from degeneration within the
auditory system, or from limits on the auditory system’s ability
to adapt to abnormal patterns of input. Computational mod-
els that can simulate hearing behavior given CI input could
potentially be used to analyze the role of different factors in
shaping behavioral outcomes. Here, we trained artificial neu-
ral networks to recognize and localize sounds from simulated
auditory representations (Kell et al., 2018; Saddler, Gonzalez,
& McDermott, 2021; Francl & McDermott, 2022) from either a
normal cochlea or a CI-stimulated auditory nerve model. We
compared model speech recognition and sound localization
in noise to that of CI users and analyzed the effects of differ-
ent peripheral parameters and brain plasticity on model per-
formance.

Methods
Models were built by combining a realistic simulation of the
spiking auditory nerve with a neural network intended to sim-
ulate the central auditory pathway.

Normal cochlea auditory nerve model
Input sounds were passed through a filter bank modeled on
the human cochlea. Filter responses were converted to fir-
ing rates using rate-level functions modeled on those of the
auditory nerve. Normal hearing auditory “nervegrams” were
generated by sampling spikes from these firing rates (Figure
1A).

CI-stimulated auditory nerve model
We used a standard CI processor (Figure 1B) consisting of
subband envelope extraction, compression, and amplitude
modulation of pulse-trains. We simulated the electrode-nerve
interface by imposing spatial spread of excitation and reduced
dynamic range (<15 dB) of electrically stimulated auditory
nerve fibers.

A) Simulated normal cochlea nervegram

B) Simulated CI-stimulated nervegram

C) Neural network input, architecture and training
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Figure 1: A) Normal hearing and B) CI-stimulated auditory
nerve model stage. C) Neural network was trained to recog-
nize words and localize sounds from auditory “nervegrams”.

Model task and optimization
A feedforward convolutional neural network (Saddler, Francl,
et al., 2021) was trained on either normal-hearing or CI-
stimulated nervegrams. We trained the model separately on
two tasks (Figure 1C): speech recognition in noise (reporting
the word spoken at the middle of 2s audio clips) and sound
localization (reporting azimuth and elevation of a target sound
in diffuse background noise; (Francl & McDermott, 2022)).

Simulating the effects of neural plasticity
Speech recognition abilities improve over time following im-
plantation and are inversely correlated with age of implanta-
tion, suggesting that neural plasticity is important for achieving
the best outcomes. However, plasticity might be limited, either
by sensitive periods during development and/or by some parts
of the brain being less plastic than others. To understand the
importance of plasticity, we explored three different training
conditions. Static CI model: The network was optimized for



normal hearing input and tested on CI input without additional
optimization (potentially analogous to testing a CI user imme-
diately after implantation). Fully plastic CI model: The entire
neural network were reoptimized for CI input (analogous to an
infinitely plastic auditory system, with task performance ap-
proaching the limit of what is possible with CI input). Partially
plastic CI model: Only the late layers of the network were re-
optimized for CI input, motivated by the hypothesis that plas-
ticity might be more pronounced in later stages of processing,
and by evidence that cortical neural responses are best pre-
dicted by relatively late stages of neural network models (Kell
et al., 2018; Tuckute et al., 2023).

Results
Partially plastic model best captures CI-user speech
recognition in noise

Figure 2A shows word recognition accuracy of the different
models as a function of signal-to-noise ratio (SNR). The neu-
ral network trained on normal-hearing input exhibited human-
level performance (black line). The static CI model (ma-
genta line) was near chance. This result is consistent with
many individuals exhibiting poor speech recognition immedi-
ately after implant activation. Performance of the fully plas-
tic CI model (green line) was significantly better than typical
CI users (dashed red line), when tested on the same task.
Speech recognition performance on par with human CI users
was achieved only when only the late network stages were
reoptimized for CI input (blue line).

A ) Effect of full vs partial plasticity B ) Effect of varying number of 
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Figure 2: Speech recognition in noise results.

Human-like dependence on the number of active elec-
trodes. Figure 2B depicts the word recognition accuracy as
a function of the number of active CI electrodes. The full and
partially plastic model both performed worse when the num-
ber of electrodes was reduced from 16 to 4, as found in hu-
man CI users ((Berg et al., 2019); note that the human data

was obtained with a different speech task, such that absolute
performance is not comparable).

Performance degrades with increasing spread of excita-
tion. To investigate whether more spatially focused CI stim-
ulation might improve speech recognition, we manipulated the
extent of spatial spread of excitation in our CI model (deter-
mined in part by the nature of the electrical stimulation). We
simulated broad (green dashed line) and narrow (green solid
line) spatial spread, mimicking monopolar and bipolar CI stim-
ulation, respectively (Figure 2C). Model speech performance
became closer to that of normal hearing as the spread of ex-
citation was reduced.

Performance degrades with auditory nerve degeneration.
We evaluated the effect of auditory nerve degeneration on
word recognition performance by reducing the number of sim-
ulated nerve fibers (by 25%, 50%, 90%, 95%, and 99%).
Our results (Figure 2D) showed modest drop as the extent
of nerve degeneration was increased, with the effect being
prominent only for >95% degeneration (Cheng & Svirsky,
2021), suggesting that nerve degeneration on its own is un-
likely to count for suboptimal performance of human CI users.

CI model fails to achieve near-normal sound
localization performance
Our CI hearing model exhibited similar deficits in localization
behavior as CI users. We analyzed localization error as a
function of the stimulus SNR (Figure 3). The normal hear-
ing model (black line) showed improved performance as the
SNR increased, and the localization error was very low for
clean stimuli. The fully plastic CI model (green line) exhibited
a similar overall trend, but the localization error was at least 4
to 5 times higher than the normal hearing condition. Perfor-
mance was worse for the partially plastic CI model (blue line)
and close to chance for the static condition (magenta line).
The localization deficits with the fully plastic CI model indi-
cate that limitations in CI users’ localization abilities is at least
partly because of limits on the information conveyed by the CI
processing strategy.

Figure 3: Sound localization results for normal hearing model
and CI models with different extent of plasticity.

Conclusion
This work provides initial validation of machine learning-based
models of CI-mediated perception. Our results clarify the roles
of impoverished peripheral information and incomplete central
plasticity in limiting CI users’ performance of realistic auditory
tasks.
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