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Abstract

This study investigates the impact of multiscale tempo-
ral processing on environmental sound recognition us-
ing deep neural networks (DNN). Inspired by the brain’s
capability to process auditory information across vari-
ous time scales, we developed a multi-scale DNN archi-
tecture, integrating multiple parallel recurrent neural net-
work (RNN) streams. Each stream processes the input
spectrogram at a distinct temporal scale. The outputs of
these streams are then combined and further processed
to achieve sound categorization with a temporal resolu-
tion of 50 ms. This design aims to capture the diverse dy-
namics of natural sounds at large, ranging from transient,
impulsive signals to repetitive and sustained sounds.
We conducted a comparative analysis between the per-
formance of this multiscale RNN network and networks
trained on single-scale inputs. A comparison of our mul-
tiscale RNN network with single-scale networks reveals
superior multiscale-RNN recognition of events. This per-
formance advantage suggests that the combination of the
unique information in multiple temporal scales achieves
superior classification of natural sound events.
Keywords: Multiscale temporal processing; Natural sound

recognition; Deep neural networks; Time-resolved event classi-
fication.

Introduction

A substantial body of behavioural, electrophysiological and
neuroimaging research and biologically-inspired computa-
tional modelling has demonstrated the brain’s ability to pro-
cess different time scales of auditory information, ranging
from milliseconds to seconds. The significance of multiscale
temporal processing has been highlighted in diverse auditory
tasks such as speech perception, music processing, and au-
ditory scene analysis (Chi, Ru, & Shamma, 2005; Elhilali &
Shamma, 2008; Santoro et al., 2014; Norman-Haignere et al.,
2022).

Recent advancements in automated sound event detection
(Mesaros, Heittola, Virtanen, & Plumbley, 2021) have high-
lighted the superior ability of deep learning models, including
convolutional (CNN) (Hershey, Chaudhuri, Ellis, Gemmeke,
et al., 2017; Esposito et al., 2023), recurrent (RNN), and
convolutional-recurrent (CRNN) networks (Cakir, Parascan-
dolo, Heittola, Huttunen, & Virtanen, 2017), at classifying com-
plex, natural sounds and sound mixtures. Notably, however,
the state of the art in natural sound DNN modelling lacks the
incorporation of multiscale temporally-resolved mechanisms.
Here, we describe our initial steps to fill this gap. We train
a deep neural network (DNN) that enhances sound classifica-
tion by exploiting the multiscale nature inherent in the temporal
dynamics of natural sounds.

We considered a DNN architecture employing multiple RNN
streams, each tailored to process inputs at different temporal
scales. The outputs of these streams are then combined and
further processed, leading to sound categorization. This de-
sign is intended to capture the distinct temporal dynamics of
sound at various scales, from the quick chirp of a bird to the
prolonged hum of urban noise. For our evaluation, we trained
a MultiScaleRNN network with three streams, each receiving
a different representation of the same sound computed at dis-
tinct time scales. We compared the performance of this net-
work to that of networks trained on single-scale inputs. Impor-
tantly, the DNNs received the input spectrogram incrementally
and generated an output with a temporal resolution of 50 ms.
Our findings show that the multiscale approach exhibits supe-
rior ability to recognize events compared to the single-scale
model. This performance advantage suggests that the multi-
scale network effectively combines the unique contributions of
each temporal scale to classify sound events more accurately.



Methods
Model Architecture

We employed an RNN architecture consisting of three parallel
streams of Gated Recurrent Units (GRUs). The streams re-
ceived as input a spectrogram patch of 5, 20 and 40 timesteps
respectively (Fig. 1). Each stream consisted of a series of
three GRUs, with 1024, 512 and 256 units, respectively. The
model comprises GRU layers with dropout (rate=0.2) for over-
fitting prevention, outputting data at each time-step. Outputs
from the three streams concatenate into a single vector, pro-
cessed by a feedforward (FF) network. The FF network con-
sists of a 256-unit layer with ReLU activation, followed by a
classification layer with 91 units using sigmoid activation. This
setup enables frame-wise classification of sound sequences,
with binary cross-entropy as the loss function.

Dataset

The dataset for evaluating the DNNs was derived from
FSD50K (Fonseca, Favory, Pons, Font, & Serra, 2022), an
open dataset featuring 51,197 audio clips, each human la-
belled across 200 categories. Based on data-quality consider-
ation, we selected a subset of 90 categories, with over 19,689
sounds designated for the training set, 2,814 for the validation
set and 7,055 for the evaluation set.

Pre-Processing

Each audio clip was resampled to 16 kHz mono and adjusted
to a total duration of 6 seconds, with the initial second set
to silence. Sounds shorter than 5 seconds were repeated
to meet the required duration. Spectrograms were generated
using the Short-Time Fourier Transform (STFT) with window
sizes of 50 ms, 200 ms, and 400 ms, respectively for the
three streams. These spectrograms were then converted to
mel-spectrograms with 128 frequency bins (between 125 and
7500 Hz). The mel-spectrograms were segmented into 50 ms
frames, with the first 20 frames labelled as “Silence” and the
rest labelled with the sound-category label for the FSD50K
clip.

Evaluation

To evaluate the performance of our models, we utilized the
F1-Score macro metric. The F1 Score is calculated as the
harmonic mean of precision and recall. The macro-average
method computes the F1 Score independently for each class
and then takes the average, thus treating all classes equally.

Results

Fig 1 provides an example of sound classification by our Multi-
ScaleRNN. The panel below the waveform shows three spec-
trograms, each computed at a different scale, alongside their
respective input patch spectrograms of varying lengths. The
bottom panel shows the frame-by-frame scoring of the true
label for the MultiScaleRNN and each of the single-scale net-
works. The MultiScaleRNN identifies the sound event more
accurately, and outputs a declining true-label score as the
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Figure 1: Time-Wise Score Prediction across frames Audio
waveform of a dog barking twice, followed by a period contain-
ing silence and low-amplitude background noise (top panel).
Spectrograms of the barking sound at three scales (mid-
dle panels). Predictions scores, with MultiScaleRNN outper-
forming other models at recognizing this sound event (lower
panel).

barking sound ends, leading to the subsequent portion of si-
lence. In contrast, the single-scale networks detect the event
with a lower confidence below threshold and does not show
the same strong decline in event recognition as the bark-
ing sound ends. These results demonstrate that the Multi-
ScaleRNN provides a more accurate time-wise score than the
other models.

Fig. 2 shows the frame-by-frame F1-Macro score, com-
puted across all test sounds, and excluding the first 20 silence
frames. The MultiScaleRNN consistently outperforms single-
scale networks.

Conclusions

Our results suggest that integrating information across from
three distinct acoustic scales improves sound classification in
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Figure 2: F1-Score Trends Across Frames. F1-Macro
scores, excluding the first 20 silence frames, with Multi-
ScaleRNN showing consistently higher performance levels
compared to single-scale models.

RNN models. The proposed architecture generates frame-by-
frame predictions and can be used in model-based analysis of
time-resolved brain measurements, such as (intracranial)EEG
or MEG. Ongoing work includes improvements in up-scaling
the network to larger datasets, the inclusion of time-resolved
convolutional layers for optimizing spectro-temporal feature
extraction (Cakir et al., 2017) and the replacement of categori-
cal labels with continuous semantic representations (Esposito
et al.,, 2023).
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