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Abstract

Attitudes towards risk play a crucial role in everyday
decision-making as well as in psychiatric disorders like
anxiety. The Balloon Analogue Risk Task (BART) pro-
vides a behavioral measure of risk preference that has
been widely applied to both clinical and nonclinical pop-
ulations. However, although most versions of BART in-
volve epistemic as well as aleatoric uncertainty, the impli-
cations of this for risk-sensitivity have not been explored.
We adopt a prominent theoretical framework for under-
standing risk, namely conditional value-at-risk (CVaR), to
elucidate the effect of risk attitudes on optimal explo-
ration and exploitation in a simple instance of BART. In
sequential problems, CVaR comes in two different flavors:
pCVaR, which precommits to a level of risk at the very
first choice; and nCVaR, which re-applies the same risk
level at every step in a nested manner. We show that
the structure of stochasticity in the BART is such that
pCVaR is more risk-averse than nCVaR in a single trial,
for the same nominal risk. We also show that risk pref-
erences and prior expectations interact in risk-sensitive
exploration across multiple trials. We hope to provide a
normative grounding for a more detailed understanding
of behavioral variation in the BART.
Keywords: risk-averse reinforcement learning; exploration;

Bayes adaptive Markov decision process (BAMDP); balloon
analogue risk task (BART)

Introduction
Risk Sensitivity in Sequential Decisions

Everyday decision making often involves uncertain or proba-
bilistic outcomes, implying a tremendous importance for risk
sensitivity. This is also a critical aspect of many psychiatric
symptoms, e.g. intolerance to uncertainty (Grupe & Nitschke,
2013; Charpentier et al., 2017), excessive worry (Watkins,
2008), avoidance (Maner & Schmidt, 2006), etc.. Here, we go
beyond conventional single-shot and two-step tasks and ex-
amine risk sensitive exploration and exploitation (formalized
by conditional value-at-risk; CVaR) in longer-range sequen-
tial decision-making (exemplified by a simple form of Balloon
Analogue Risk Task; BART).

Environment: Balloon Analogue Risk Task (BART)

The Balloon Analogue Risk Task (BART) (Lejuez et al., 2002)
is a classic experimental paradigm that generates a behavioral
measure of risk attitudes. Human subjects perform a trial of
the task by pumping up a virtual balloon. With each pump, the
balloon grows larger and the subject accrues a small amount
of money, but there is a chance that the balloon bursts, wiping
out all the earnings accrued on that trial. At any point be-
fore explosion, the subject may choose to stop pumping, cash
out, and move to the next trial. Subjects face aleatoric un-
certainty from the chance of bursting per step; and epistemic
uncertainty if they do not know the distribution governing the
chance. We chose the BART in our project as a proof-of-
concept environment for its schematic but sequential nature;

but simplified it to assume that bursting happens with fixed,
but initially unknown, hazard rate or probability 8 per pump.

Risk Framework: Conditional Value-at-Risk (CVaR)

Conditional value-at-risk (CVaR) is a common measure in the
literature of risk-averse reinforcement learning (Rockafellar &
Uryasev, 2002; Gagne & Dayan, 2022). It is defined as the ex-
pected value of the outcomes in the lower o-tail of their distri-
bution. When risk preference o = 1, the agent is risk-neutral;
when 0 < o < 1, the agent is risk-averse, with a smaller o
corresponding to more severe aversion.

Compared to traditional risk frameworks, CVaR offers psy-
chologically attractive qualities by capturing the extremely
negative events that seem to motivate risk-avoidant behaviors
and anxious thought (Watkins, 2008).

In sequential problems such as the BART, CVaR comes
in two different flavors, one which precommits to a level
of risk sensitivity at the very first choice (“precommited
CVaR”/pCVaR), and the other which re-applies the same level
of risk sensitivity at every step in a nested manner (“nested
CVaR”/nCVaR). We follow the formalization of pCVaR and nC-
VaR from Gagne & Dayan (2021; 2022); Chow et al. (2015).

Risk-Sensitive Exploration

The classic trade-off between exploration and exploitation is
also inescapable in sequential decisions with epistemic un-
certainty and learning. Under the formal framework we estab-
lish for risk sensitivity in sequential decisions inherent to the
BART, we are especially interested in the implications of risk
sensitivity for exploration. What does optimal risk-sensitive
exploration look like? And how does it vary from individual to
individual, each with their unique risk preferences and priors
from past experiences?

Models and Simulation Results

We simulate and analyze exploration behavior of a risk-
sensitive agent solving a version of the BART with a fixed
hazard rate 0. This assumption is in line with Wallsten et al.
(2005), who found that the best model assumes a constant in-
stead of increasing burst probability within a trial, even when
the latter is actually true.

For a small-scale simulation as a proof of concept, we cap
the number of pumps per trial at 8 and the number of trials
per block at 5, i.e. the agent interacts with 5 identical balloons
in a row, for each balloon (i.e. trial) choosing between 0 to 8
pumps. We also assume no discounting. The model of ex-
ploration behavior in the BART under the CVaR framework is
two-fold: within-trial (inner loop) and across-trial (outer loop).

Within-Trial: CVaR Optimization

We model the within-trial behavior as a single-shot optimal
policy under CVaR, i.e. no pump-by-pump belief updating and
therefore exploration being important only between trials. This
assumption is again taken from the best model in Wallsten
et al. (2005), in which the number of pumps is already de-
cided at the start of a trial. Fig 1 (a) shows that, unless o =



(a) Within-Trial Optimal Policy, P(burst)=0.1 (c)
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Figure 1: Simulation Results. (a) pCVaR vs. nCVaR within-trial optimal policy for all levels of risk-preference o when the balloon’s
burst probability is known to be 0.1 (as an example; the direction of inequality between pCVaR vs. nCVaR is preserved regardless
of this value). (b) Exploration bonus for all levels of risk-preference pCVaR. Each line plot corresponds to a different prior (¢ and
b refer to parameters of Beta distribution); this plot shows the difference between the risk-adjusted value of the initial state for,
e.g.,a=1;b =1 versus a = 30;b = 30. (c) Rendered risk-sensitive (pCVaR) policies. Each of the six heatmaps corresponds
to one agent’s behavior distribution (in percentages annotated as numbers in the heatmap cells) for every trial of the block. The
agent’s risk preference o and the balloon’s burst probability varies across heatmaps.

1 (risk-neutral), the pCVaR optimal policy given perfect knowl-
edge of 6 (which makes the BART a standard Markov deci-
sion process or MDP; Sutton & Barto (2018)) is more con-
servative than the nCVaR optimal policy. This is the opposite
of the examples shown in Gagne & Dayan (2022). This is
a result of the type of progressive adjustment to risk prefer-
ences in pCVaR akin to a justified gambler’s fallacy (Chen et
al., 2016), in which risk-aversion increases following advanta-
geous stochastic samples. This is because the stochasticity
structure of the BART only allows for fortunate state transitions
to happen in an unfinished trial (i.e. “surviving a pump” instead
of “bursting the balloon”), which keeps adjusting o« downwards
and making the agent more risk-averse.

Across-Trial: Bayes Adaptive Markov decision
process (BAMDP)

We model the across-trial exploration behavior as a risk-
sensitive optimal policy in a Bayes adaptive Markov decision
process (BAMDP) (Duff, 2002). Bayes adaptivity captures the
agent’s initial ignorance about the balloon’s value of 6 and
trial-to-trial learning (through belief updating) about this quan-
tity. The agent’s belief states are modeled by Beta distribu-
tions parameterized by a and b. The BAMDP is again subject
to CVaR so as to simulate risk-sensitive exploration across-
trial.

Combined: Exploration Bonus and Rendered Policy

Fig 1 (b) visualizes the exploration bonus, which is the dif-
ference between the starting belief state value function asso-
ciated with an uncertain vs. more certain prior of the same
mean, e.g. Beta(1,1) vs. Beta(30,30). Fig 1 (c) depicts

the simulated behavior of agents enjoying various risk pref-
erences (o0 = 0.6;0.9;1.0) and interacting with balloons of dif-
ferent explosive properties (6 = 0.1;0.33). Both figures show
rich interactions between risk preferences and priors.

Discussion

Epistemic uncertainty generates risk that needs to be quan-
tified and accommodated to predict and understand behavior
in normal and psychiatric populations. We present prelimi-
nary results examining this in the context of the BART task
and CVaR. Our next steps are to study the effects of nCVaR
on exploration, to accommodate risk seeking as well as risk
aversion (by focusing on upper rather than lower tails of the
outcome distribution) and, by fitting our models to human be-
havioral data, to probe links between individual differences in
risk preference and related psychiatric symptoms.
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