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Abstract
Perceptual learning is defined by increased performance
on a perceptual task following prolonged practice. Many
studies have observed that rates of perceptual learning
can depend on the strength of visual attention deployed
during the learning. Despite attempts to relate perceptual
learning and attention, the exact mechanism behind this
relationship remains unknown. Here, we propose a con-
volutional neural network (CNN) model of visual percep-
tual learning for the purpose of elucidating this relation-
ship. Our model uses an attention system along with a lo-
cal learning rule that, through weight updates, solidifies
the impact of attention. We found that the model’s per-
formance on a precise visual task increased as a result
of the local learning rule and that this effect was depen-
dent on the magnitude of the attention modulation. This
suggests that modulatory attention and plasticity in early
visual areas are sufficient for inducing perceptual learn-
ing.
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Introduction
Perceptual learning, resulting from prolonged exposure or
practice on a task involving a particular stimulus, is character-
ized by increased performance on the same or other tasks in-
volving the stimulus. While synaptic plasticity is thought to be
a key factor in visual perceptual learning (Fahle, 2004; Gluck
& Granger, 1993), it has been shown that attention to the per-
ceptual stimulus during learning may be required for the effect
to occur (Byers & Serences, 2012; Mukai et al., 2011).

Perceptual learning is also thought to induce highly spatially
selective changes, indicating plasticity in early visual regions
(Jehee et al., 2012; Mukai et al., 2011). Interestingly, recent
work has shown that feature-based attention (which acts in
a spatially global way), can cause performance benefits from
perceptual learning to generalize to untrained spatial locations
(Hung & Carrasco, 2021).

Recent computational models of perceptual learning have
used Hebbian-like updating rules to re-weight model repre-
sentations (Dosher et al., 2013; Petrov et al., 2005). Such
models open a pathway to exploring perceptual learning
mechanistically but tend be shallower and can’t capture the full
visual hierarchy. At least one previous study has used deep
CNNs to replicate effects of perceptual learning, but did not in-
corporate attention and relied on backpropagation for weights
updates, which is not biologically realistic.

Here we build on previous models that have incorporated
feature attention (in the form of gain modulation) into CNNs
(Lindsay & Miller, 2018; Martinez-Trujillo & Treue, 2004), and

Figure 1: Architecture of the perceptual learning model. The
left-hand side shows an AlexNet architecture which receives
an input image containing a Gabor patch. Two attention net-
works take a Gabor orientation cue as input and modulate the
first two convolutional layers, allowing the model to flexibly fo-
cus on the specialized task of discriminating whether the cued
orientation is in the input image. Finally, a Hebbian update
rule uses the correlation of activity between the first and sec-
ond layers to update the model weights, thereby replicating
perceptual learning.

build on these to replicate perceptual learning by adding local
Hebbian learning rules in early layers. Through this we hope
to show how local learning can solidify attention-induced ac-
tivity changes, leading to a better performing model.

Methods
Our goal is to test if a local Hebbian learning rule combined
with top-down feature attention can replicate observed effects
of perceptual learning and its dependence on attention. Our
modeling approach has three training stages. First, we start
with an Alexnet model pre-trained on ImageNet. Second, we
train an attention system to modulate the activity of the first
two layers of the CNN based on an orientation cue. At the
output, the model must learn to respond positively if the cued



orientation is present and negatively if not. In the third phase,
we mimic perceptual learning by letting a Hebbian learning
rule change the weights between the first and second layers of
the network while attention modulates activity at these layers
(see Figure 1). Further details of this process are provided
below.

Task and Stimuli For attention training, the model is given a
binary classification task in which it indicates whether a cued
orientation is present in an input image. Input images con-
sist of one Gabor patch in one out of four quadrants and with
one of four orientations; pixel noise patches are also randomly
placed on each image (see Figure 1) for an example. The cue
is represented as a one-hot encoded vector indicating one of
the four possible orientations, and this is passed into the at-
tention networks. For the perceptual learning phase, the ori-
entation cue is held constant, as is the stimulus location. On
each trial, the stimulus orientation is either the cued one or 90
degrees opposite it (leading to chance performance of 50%).

Model We used an Alexnet model pre-trained on a 1000-
way classification task with Imagenet implemented in Tensor-
flow and swapped out the final layer for a binary classifier. Two
attention networks (each a 2-layer feedforward MLP) were
used to implement feature-based attention in the model, one
for each of the convolutional layers modulated by attention.
When given an orientation cue, the attention networks each
output a set of gain modulation values, fi one for each feature
channel in their respective layers. At a given layer, activity
in feature channel i is multiplied by (1+β fi), with β being a
strength parameter (held constant at 1 during attention train-
ing). Thus, as in previous work (Lindsay & Miller, 2018), fea-
ture attention works globally across space, but modulates dif-
ferent feature channels differently. The attention network and
binary output layer of the model are trained jointly via back-
propagation to perform the binary classification task.

Perceptual Learning
To implement perceptual learning, backpropagation is turned
off and the second convolutional layer is coded as a ‘locally
connected’ layer, i.e. the weight sharing normally used in
convolutional layers is turned off to allow spatially specific
learning. While the network performs the constant orientation
detection task described above, a Hebbian-inspired learning
rule (wherein correlated pre-post activity leads to weight in-
creases and anti-correlated leads to decreases) is applied to
the weights that connect the first pooling layer to the second
convolutional layer. This procedure is done either with β = 1
(strong attention) or β = .8 (weak attention). Initial and post-
learning performance on this task is evaluated with strong at-
tention and stimuli either at the trained quadrant or the diago-
nally opposite one.

Results and Conclusion
In the 3 networks (different colors) shown in Figure 2, we can
see that performance consistently increased after the percep-
tual learning phase. However, this increase was dependent

Figure 2: Results for several models with different initializa-
tions before and after perceptual learning. Dotted lines in-
dicate weaker attention strength. Left: the models ability to
perform the task with the cued orientation increased after per-
ceptual learning. Right: The same effect is seen to a lesser
degree when the task is performed on a region other than the
trained region. In both cases, stronger attention led to a larger
effect of perceptual learning.

on the strength of attention used during learning, with perfor-
mance increases weaker for weaker attention (dotted lines).
To test if the feature-based attention we deployed here causes
learning to generalize to other spatial locations as observed
experimentally (Hung & Carrasco, 2021), we also evaluated
post-learning performance in an untrained quadrant. We can
see that perceptual learning does still increase performance
here, but the increases are less than those for the trained
quadrant. Furthermore, weaker attention leads to weaker per-
formance enhancement on average here as well, indicating
that this learning is dependent on top-down feature-based at-
tention.

In total, we are able to replicate the impact of perceptual
learning on behavior using a local learning rule in an attention-
modulated CNN. We demonstrated the dependence of per-
ceptual learning on attention by modulating attention strength.
Traditionally, local learning rules have struggled to enhance
performance in deep neural networks due to the credit as-
signment problem. However, we show here how attentional
modulation can assist with credit assignment, making the ap-
plication of local learning rules (even very early in the network)
suitable for enhancing performance.

Next steps: We hope to incorporate spatial attention into
this model. We will also work to refine our attention training
procedure as it sometimes produces models strong with ori-
entation or location biases that are not suitable for the percep-
tual learning phase.
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