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Abstract: 

Statistical learning is the ability to learn statistical 
patterns in the environment. While statistical learning in 
the visual domain improves over development, the role 
of the implicit and explicit memory systems centered on 
the striatum and hippocampus is unclear. Using 
multivoxel pattern analysis, we investigated the 
functional role of the striatum and hippocampus in visual 
statistical learning. We trained multiple linear support 
vector machine classifiers to discriminate between 
deterministic/structured and non-deterministic/random 
triplets in the presented visual stimuli across the two 
brain structures for both linguistic and non-linguistic 
stimuli. Our results indicate distinct spatial patterns for 
structured and random triplets in adults (ages 18–24 
years) across both the hippocampus and striatum, with 
similar performance across linguistic and non-linguistic 
domains. However, children (ages 6–12 years) do not 
show distinct spatial patterns across structured and 
random triplets for these two structures. These findings 
suggest that the hippocampus and striatum are less 
sensitive to temporal statistical regularities in visual 
stimuli in children than in adults, providing insights into 
the functional roles of the two memory systems in visual 
statistical learning over development. 

Keywords: Statistical learning; functional magnetic 
resonance Imaging (fMRI); Multivoxel pattern analysis 
(MVPA); memory systems 

Introduction 

Humans' ability to learn statistical regularities in the 
environment is termed statistical learning (SL). 
Previous studies indicate improved SL abilities across 
development (Conway, 2020; Forest et al., 2023). 
Understanding the neural mechanisms of statistical 
learning and the underlying neurocognitive systems has 
been challenging. Specifically, the role of the implicit 
and explicit memory systems in statistical learning over 
development is unclear. Several studies show 
activations in the prefrontal cortex, sensory cortices, 
hippocampus, and striatum in statistical learning tasks 
(Batterink et al., 2019; Forest et al., 2023; Turk-Browne 
et al., 2009). However, the activations across the 
hippocampus and striatum have been inconsistent 
across studies, more so, in SL studies in children 
(Forest et al., 2023). Some of these inconsistencies can 
be attributable to the low sensitivity of the traditional 
univariate approaches, variability in sample age ranges, 
and inter-individual variability in brain activation 
patterns in SL tasks. 

Multivoxel pattern analysis (MVPA) or decoding 

analyses utilize distinct spatial patterns in brain activity 

to differentiate between stimuli conditions (Mahmoudi et 

al., 2012; Tong & Pratte, 2012). In contrast with the 

mass-univariate approaches, MVPA is more sensitive 

to condition differences and can account for inter-

individual variability in activation patterns across 

subjects.  

Study 

We use decoding analyses with fMRI data obtained 
from adults and children exposed to a visual SL task to 
investigate the role of the hippocampus and the striatum 
in visual SL across development. Because adults are 
more experienced in language than children, we also 
investigate whether the group differences vary across 
the linguistic and non-linguistic domains. Higher 
decoding performance for an ROI indicates greater 
sensitivity of the ROI and more distinct spatial activation 
patterns in response to the temporal structure of the 
visual stimuli. 

Methods 

Participants We used a task-based, child-friendly 

visual SL fMRI protocol to obtain neuroimaging data 

from 22 children (age M = 8.6 years, SD = 2.1; 12 

Female, 9 Male, 1 Other) and 29 adult participants (age 

M = 20.3 years, SD = 1.3; 20 Female, 9 Male). Both the 

child and the adult participants were right-handed, 

native English speakers and had no history of any 

neurological or psychiatric disorders. 

Stimuli and task: The participants were exposed to 
visual stimuli consisting of structured and random 
triplets of images of alien characters (non-linguistic) and 
alien characters holding up English letters (linguistic). 
The stimuli were organized into blocks of 48 stimuli (16 
triplets) corresponding to one of 4 categories: letters 
(Ltr-Str) and images (Img-Str) with deterministic triplet 
structure, randomly ordered letters (Ltr-Rnd), and 
images (Img-Rnd). There were three blocks of a 
category in a run. Furthermore, two sessions (each 
session consisting of 2 runs) of the fMRI data were 
collected for each participant. Each session consisted 
of structured stimuli from one domain and random 
stimuli from the other domain. For example, as shown 
in Figure 1, if session 1 consisted of Ltr-Str and Img-
Rnd, then session 2 consisted of Img-Str and Ltr-Rnd. 
The order of the sessions was counterbalanced across 
participants. Both the letter and the image triplets are 
learnable for adults, supported by faster response times 
to structured than random stimuli (Schneider et al., 
2020). 

fMRI data acquisition:fMRI data were acquired at two 
sites with a 64-channel phased array coil. Functional 
images were acquired using simultaneous multi-slice, 
T2*-weighted echo-planar imaging scans (TR=800 ms, 
TE=32 ms, flip angle=61°, FOV=21 cm, in-plane 
matrix=64 × 64, acceleration factor=6). We acquired 60 
adjacent slices in an interleaved sequence resulting in 
volumes with 2.5 × 2.5 × 2.75 mm3 resolution. 



 

 

Figure 1: Schematic of the visual SL task. 

 

Analysis 

Preprocessing BOLD data was preprocessed using 
FMRIPREP (version 22.1.1) (Esteban et al., 2018). The 
preprocessing pipeline included slice time correction, 
motion correction, co-registration of the BOLD image 
with the T1w image, and normalization to the ICB 152 
Nonlinear Asymmetrical template v2009c. 

Furthermore, for the MVPA to account for baseline 
differences and variance in the BOLD activation across 
runs, the mean activation of the non-task blocks was 
subtracted from the BOLD data for each time point, and 
the time series data across each voxel was normalized 
to have a zero mean and SD of 1. The data from all the 
runs were concatenated as structured, and random 
conditions were distributed across the different runs. 

Harvard-Oxford cortical and subcortical atlases were 
used to extract the two bilateral ROIs, hippocampus and 
striatum (caudate, putamen, and nucleus accumbens), 
used in this study. 

Multi-voxel pattern analysis After concatenating the 
BOLD data across different runs, a linear-support 
vector machine classifier was trained on the linguistic 
and non-linguistic conditions separately to discriminate 
between time points corresponding to structured and 
random conditions. The area-under-curve for the 
receiver-operating characteristics (ROC) curve from a 
10-fold cross-validation classification procedure was 
used to get estimates of the classifier performance. 

Since the structured and random conditions are 
across different runs, we also trained a “no-task” 
classifier to classify the “rest blocks” across different 
runs. We use this classifier performance as a baseline 
as the linguistic and non-linguistic classifier may reflect 
“run” differences in addition to the condition differences. 
Hence, to control for the “run” differences, the classifier 
decoding results reported are obtained from the 
difference between the linguistic and non-linguistic 
classifiers and the “no-task blocks” classifier to just 
reflect condition differences.  

Statistical Analysis Linear mixed-effect models were 
fit on the decoder performance measures with the ROI 
(hippocampus, striatum), domain (linguistic, non-
linguistic), and group (child, adult) as fixed effects and 
the subjects as a random effect.  

Results 

In adults, the hippocampal and striatal decoding 
performance for the structured vs random conditions 
was significantly above the no-task classifier’s 
performance across domains. However, children's 
hippocampus and striatum did not differentiate 
structured from random conditions better than the no-
task classifier. A linear mixed-effect model on the 
performance scores yielded a statistically significant 
main effect of group (z = -3.31, p <.001)  but no 
significant main effects for domain or ROI. Furthermore, 
no significant interactions were identified. Since there 
was no main effect of the domain, in Figure 2, we plot 
the pooled linguistic and non-linguistic decoding 
performances (with the no-task block decoding 
performance subtracted) for adults and children for both 
hippocampus and striatum. To summarize, the results 
seem to indicate that decoding performance was much 
higher in both ROIs for adults compared to children, and 
adults had statistically significant decoding 
performance attributable to condition discriminability. 

 

 
Figure 2: Decoder performance across adult and child 

attributable to structured vs random differences for 
hippocampus and striatum (*** p < .0001) 

Discussion 

The current work suggests that the hippocampus and 
striatum show distinct spatial patterns for structured and 
random visual stimuli in adults. These brain structures 
show similar performance in both linguistic and non-
linguistic domains in adults. Children do not show such 
distinct spatial patterns for structured and random 
visual stimuli.  Since previous studies seem to indicate 
that statistical learning in the visual domain improves 
across age (Arciuli & Simpson, 2011; Shufaniya & 
Arnon, 2018), we plan to conduct additional analyses to 
examine if the chance-level performance in children is 
due to their low-SL skills or the developmental trajectory 
of the hippocampus (Schlichting et al., 2017) and 
striatum. The latter possibility may indicate that these 
brain structures play a less critical role in statistical 
learning in childhood. 
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