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Abstract 
Many theories of language in the brain rely on the notion 
of predictions. Yet, little is known about how linguistic 
predictions effectively change the representations of lan-
guage in the brain. Here, we investigate how two levels 
of representations in the language hierarchy vary with 
predictability: words and phonemes. For this, we rely on 
Large Language Models (LLMs) trained to predict incom-
ing words and phonemes, and estimate the posterior 
probability of these features as speech unfolds. We then 
evaluate whether predictability impacts the representa-
tions of words and phonemes decoded from the MEG re-
sponses of 27 participants listening to two hours of sto-
ries. Our results show that both words and phonemes are 
best decoded from the brain if they are unexpected from 
a given context. This finding constrains the computa-
tional architecture underlying natural speech compre-
hension.  

Keywords: inference; magnetoencephalography; natu-
ral language processing, large language model. 

Introduction 
Language is central to human cognition. It structures 
social interactions, and is the primary vehicle to accu-
mulate knowledge within and across individuals. Yet, 
the precise biological and computational bases of lan-
guage remain unknown. Specifically, to what extent 
does the human brain continuously predict future pho-
nemes, words and concepts? How do such predictions 
shape neural representations? Previous results sug-
gest the existence of an inferential process in the hu-
man brain during language processing, for words and 
phonemes (Caucheteux et al., 2023; Donhauser & 
Baillet, 2020; Forseth et al., 2020; Garrido et al., 2009; 
Goldstein et al., 2022; Heilbron et al., 2019, 2022; 
Lopopolo et al., 2017; Millet et al., 2023; Mousavi et al., 
2020; Shain et al., 2020; Wacongne et al., 2011; 
Willems et al., 2016). However, the computational ba-
ses underlying this inferential process are not yet fully 
understood, specifically the interaction between the in-
ferential computations taking place at these two levels 
of the language hierarchy. Large Language Models 
(LLMs), which are typically optimized to predict the next 
token based on an embedded context, offer a powerful 
framework to study how the human brain may imple-
ment hierarchical inferences about language.  
To explore the inferential framework at play during lan-
guage processing in the human brain, we rely on LLMs 
outputs with the same linguistic stimuli. We relate the 
language representations decoded from the human 
MEG data to the specific conditional expectations of 
speech stimuli computed by the LLM. 
 

Materials and Methods 
Neural recordings. We analyze magnetoencephalo-
graphic (MEG) recordings of 27 healthy participants lis-
tening to short stories (Gwilliams, Flick, et al., 2022). 
Participants are recorded with a 208 axial-gradiometer 
MEG scanner built by the Kanazawa Institute of Tech-
nology, and sampled at 1,000 Hz, and online band-pass 
filtered between 0.01 and 200 Hz. 
Language models. We use GPT-2 (Radford et al., 
2019). to estimate the contextual probabilities of each 
word given its past context, using the same stimuli to 
those heard by the participants. 
Additionally, to get contextual probabilities at the scope 
of phonemics, we construct a GPT-Phonemic model by 
fine-tuning GPT on Wikipedia, transcribed into pho-
nemes, with an adapted tokenizer.  
Decoding. Speech (phonemic and semantic) features 
are decoded from a linear combination of MEG sensors 
using a ridge regression at each time sample relative to 
word onset (α ranging from 10-4 to 104, 5-fold cross-val-
idation with sklearn-KFold). The input X is of size 27 
subjects x 208 channels x 9000 words or 60000 pho-
nemes. The output Y represents either the phonemes, 
which can be described via 6 phonetic features, or the 
words, which can be described via the 10 principal com-
ponents of the 768-word features, as provided by Spacy 
(Honnibal & Montani, 2017). 
Analysis. We relate the representations of words and 
phonemes decoded from MEG with stimuli posteriors 
approximated by the LLM – the expectation of the future 
word or phoneme given the context (Fig. 1). 
Statistics. We apply Bonferroni-corrected T-tests on 
the regression of quintile-specific decoding scores. 

 

Figure 1: Experimental design. Top: word and phone-
mic decoding. Bottom: approximation of stimuli’s con-
textual expectancy through the LLM’s posteriors. 



Results 

Decoding. Phonetic features and word embeddings 
can be decoded between -20 and 1000ms (words) and 
50ms and 350ms (phonemes) relative to their onset. In 
addition, basal as well as conditional expectancies of 
phonemes and words can also be decoded in similar 
time windows (Fig. 2). Overall, these results confirm 
that MEG can track the predictability as well as the con-
tent of phonemes and words during natural language 
listening. 

 

 

 
Figure 2: Temporal decoding of frequencies (from 
the lexicon) and conditional expectancies (from 
GPT2) using MEG activity patterns. Top: for words. 
Bottom: for phonemes. 
 
Impact of predictability. We now test whether these 
decoded representations vary with predictability, as es-
timated with GPT2-Word and GPT2-Phoneme. The re-
sults show that both the words and the phonemes are 
better decoded when they are less expected. We ob-
serve this negative correlation between conditional ex-
pectations and the decoding precision of words and 
phonemes across five quintiles of decreasing expecta-
tions – from 1st level (the most expected words, resp. 
phonemes) to 5th level (the least expected words, resp. 
phonemes). Bonferroni-corrected T-tests on the regres-
sion of quintiles’ decoding scores against frequencies 
and conditional expectancies confirm the significance of 
this relation for words and phonemes (P <0.01) (Fig. 3). 

 

 

 
Figure 3: Temporal decoding of word and phonemic 
features as a function of conditional expectancies 
from GPT2 (split into quintiles). Top: word features. 
Bottom: phonemic feature (vowel/consonant). 
 
 

Discussion 
By combining neural data with a modern language 
model’s output to the same linguistic stimuli, we show 
that two levels of representations in the language hier-
archy get sharper when there are more surprising. 
These results complement previous work. For instance, 
(Gwilliams, King, et al., 2022; Heilbron et al., 2022) 
showed that the brain continuously encodes the three 
most recently heard speech sounds in parallel, and that 
high-level linguistic predictions can inform low-level 
ones. Here, we further show that contextual expecta-
tions can be better decoded than basal expectations, 
for both words and phonemes. Additionally, we find that 
the level of expectation with which humans predict a fu-
ture word or phoneme impacts the capacity to decode 
this word or phoneme from their neural recordings. 
These findings point toward new inquiries regarding the 
link between expectations and the sharpening of neural 
representations, which we are currently exploring 
through additional analyses. 
 

Conclusion 
 

Overall, these findings provide empirical evidence to 
constrain the computational modeling of the human 
brain processing natural language. They further show 
how LLMs can be used as a powerful computational 
framework for studying the neural bases of human cog-
nition. 
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