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Abstract: 

A key goal of cognitive neuroscience is to understand 
meaningful differences in brain activity and how this 
activity maps onto human behavior. Functional Magnetic 
Resonance Imaging (fMRI) can be used to non-invasively 
assess human cognition, but it is vulnerable to the 
blurring of individual differences due to group averaging. 
Connectome Fingerprinting (CF) is a machine learning 
technique that uses resting-state brain connectivity 
profiles to make predictions about individual brain 
activity patterns. This is useful in brain areas including 
the prefrontal cortex (PFC), where activity patterns are 
highly variable across individuals. In this study, we used 
ridge-regression CF to predict activation in the lateral 
PFC during an abstract reasoning task. Our results 
demonstrate that CF is better able to predict individually 
specific activation patterns compared to the group 
average. Additionally, the results suggest that model 
accuracy is influenced by within-participant activation 
variability. In summary, our study used CF to predict 
task-evoked activation in the lateral PFC at the individual 
participant level during an abstract reasoning task. The 
results showed that CF results in a more accurate 
prediction of individual brain activity compared to the 
group average.  
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Introduction 

When studying complex cognitive tasks, functional 
Magnetic Resonance Imaging (fMRI) results in weak 
and variable individual patterns of brain activity. Group 
averaging is commonly used to improve the statistical 

reliability of the signal; however, this technique blurs 
meaningful individual differences and the fine-scale 
organization of brain networks (Amunts et al., 2000; 
Braga & Buckner, 2017). This is particularly problematic 
in the prefrontal cortex (PFC), a hub for higher-order 
cognition with known structural (Rajkowska & Goldman-
Rakic, 1995) and functional variability (Mueller et al., 
2013).  

Connectome Fingerprinting (CF) is a machine learning 
approach that uses the resting-state functional 
connectivity profile of an individual to predict 
information about their brain function during a task. CF 
has been successfully employed during tasks of 
sustained attention, sensory perception, and working 
memory (Osher et al., 2019; Tobyne et al., 2018; 
Tripathi & Somers, 2023). To our knowledge, the use of 
CF during a higher-order cognitive task such as abstract 
reasoning has not been evaluated. 

Here, we used CF on resting-state functional 
connectomes to predict individual brain activity patterns 
in the lateral PFC during abstract reasoning, a goal-
oriented process whereby previously learned 
contextual information is applied in novel situations. We 
hypothesized that this model would be more accurate 
than the group average, a key step in a more precise 
understanding of higher-order cognition at the individual 
level. Further, we investigated individual-level variability 
in task activation and its role in model performance.  



Methods 

Experimental Design & Data Acquisition 

We re-analyzed a dataset of 23 healthy participants 
acquired from Boston University and the greater Boston 
Area (Morin et al., 2023). All participants were scanned 
in a 3 Tesla Siemens MAGNETOM Prisma scanner 
during both resting-state and task-state using a 
simplified version of the Ravens Progressive Matrices 
Task (Raven, 1941). Details on task design, data 
acquisition, and processing metrics can be found in 
Morin et al., 2023. 

Search Space Selection & Model Analysis 

Our previous study found lateral PFC activation within 
the boundaries of the canonical cognitive control 
network (CCN) (Morin et al., 2023). Here, we created a 
search space using the Schaefer 400-parcellation of the 
lateral PFC within the CCN on the cortical surface of the 
brain (Yeo et al., 2011; Schaefer et al., 2018). The 
search space consisted of 6,110 & 10,945 vertices in 
the left and right hemispheres, respectively. For each 
participant, whole-brain functional connectomes were 
constructed by taking the Pearson’s correlation 
coefficient between all 400 parcels in the atlas (minus 
the search space) and each search space vertex. 

Consistent with previous research (Osher et al., 2019; 
Tobyne et al., 2018), we employed a leave-one-out 
cross-validation ridge regression based on standard 
multiple linear regression assumptions (Hastie et al., 
2009). This process involved two parallel steps: an 
outer-loop and a nested inner-loop. In each iteration, 
one participant was left out of the outer loop for testing, 
while another was left out of the nested inner loop for 
validation. The model was then trained on the task-
evoked activation data of n-2 participants using their 
concatenated functional connectomes. A grid-search 
strategy was applied to evaluate 100 hyperparameter 
values (10^0 to 10^7), whereby the model with the 
lowest mean squared error was selected. The optimal 
hyperparameter for each validation participant (n-1) 
was averaged and applied to the test participant in the 
outer loop. This was repeated n times. Model 
accuracies were compared to a leave-one-out group-
average computed on the concatenation of the lower-
level GLMs via a paired two-tailed t-test. 

 

As individual patterns of brain activity are inherently 
variable, we tested measures relating to model 
accuracy in two ways. First, we took the absolute value 
of all individual task activations subtracted from the 
group average and correlated them with model 
accuracies. Next, we split individual scan runs into 
halves (runs 1-6 & 7-12) for each participant, correlated 
task activation between halves, and correlated these 

coefficients with model accuracy (Tripathi & Somers, 
2023).  

Results 

CF Model Accuracy  

We used a whole-brain ridge regression model to 
predict individual brain activity during abstract 
reasoning. We found moderately accurate CF 
predictions in both hemispheres (left: R=0.37, right: 
R=0.45) that were significantly more accurate than the 
group average (left: R=0.30, right: R=0.38) (left: 
t(22)=2.11, p=0.04*, right: t(22)=2.56, p=0.017*)1. 
Examples of 3 participant’s lower-level task activations, 
their model prediction activations, and the group 
averages are shown in Figure 1.  

Participant Variability & Model Accuracy 

We next assessed how variability within an individual 
participant might be related to model performance. In 
both hemispheres we saw an overall trend where larger 
participant deviations from the group average were 
related to lower model accuracies (right: R=-0.49, 
p=0.016*, left=R=-0.33, p=0.1), significantly so in the 
right hemisphere. We then found that in both 
hemispheres, as a participant’s split-run task reliability 
increased, the model accuracies increased as well (left: 
R=0.55, p=0.0062, right: R=0.7, p=0.0002). Combined, 
these results suggest that participant variability 
influenced model accuracy. Results of this analysis are 
shown in Figure 2.  

Figures 

Figure 1. Activation values showing z-statistics within 
the search space from 3 example participants (left: CF 
model, middle: lower-level GLM, right: group average). 
 

 



 
Figure 2. Correlation plots showing the relationship 
between model accuracy and A) an individual’s 
deviation from the group average, and B) split-run task 
activation reliability. 

Discussion 

Our study used CF to predict task-evoked activation in 
the lateral PFC at the individual participant level during 
an abstract reasoning task. The results demonstrate 
that CF results in a more accurate prediction of 
individual brain activity compared to the group average. 
Although our accuracy values were moderate in 
comparison to previous CF work, it is worth noting that 
these previous studies employed directed attention 
tasks that elicit strong individual-level activation 
patterns (Osher et al., 2019; Tobyne et al., 2018). We 
emphasize that the current study combined CF 
methods with a higher-order cognitive task and focused 
on the PFC. Further, we found that our CF model 
performance was limited by both the reliability of an 
individual’s task activation across runs, and their 
deviation from the group average. These findings 
suggest that to improve model predictions, specifically 
for tasks that elicit more variable activity patterns, 
training sets based on larger datasets from more 
heterogeneous samples could be useful. 

The results also have relevance for individualized 
precision medicine.  Despite the growing popularity of 
fMRI in research-based and clinical applications, the 
acquisition of the data is associated with substantial 
costs (Mumford & Nichols, 2008) and is not feasible for 
many patient populations (Specht et al., 2020; Turner et 
al., 2018). Our results suggest that ridge regression-
based CF is better able to predict individual activity 
patterns than the group average during higher-order 
cognitive tasks, in our case abstract reasoning. 
Importantly, this finding emphasizes the ability to look 
at individual participant activity patterns in smaller 
sample sizes without excessive amounts of data, 
facilitating the use of neuroimaging in precision 
medicine.  
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