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Abstract

Humans communicate through both spoken and written
language, often switching between these modalities de-
pending on their goals. We investigated the alignment
of large language models (LLMs) and human participants
(N=300) that predicted words within a story presented as
either spoken language or written text. We found that
LLM predictions were more similar to humans’ predic-
tions of written text, though humans’ predictions of spo-
ken language were the most accurate. By training encod-
ing models to predict neural activity recorded with fMRI
to the same auditory story, we showed that models based
on human predictions of spoken language better aligned
with observed brain activity compared to models based
on either LLM predictions or human predictions of writ-
ten text. These findings suggest that the structure of
spoken language carries additional information relevant
to human behavior and neural representations.
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Introduction

Large language models (LLMs) have provided researchers
with tools to probe the functions that underpin efficient pro-
cessing and representation of language (Linzen & Baroni,
2021). Many recent studies demonstrate that the mechanisms
by which LLMs process and predict language relate to both
human behavior (Wilcox, Gauthier, Hu, Qian, & Levy, 2020)
and neural representations (Schrimpf et al., 2021; Goldstein
et al., 2022). However, unlike LLMs, humans regularly switch
between processing spoken and written language (Hulme &
Snowling, 2014) and represent these structures through a
common neural code (Deniz, Nunez-Elizalde, Huth, & Gallant,
2019).

While prior work has shown similarities between LLM next-
word predictions and humans’ next-word predictions for writ-
ten text (Goldstein et al., 2022; Jacobs & McCarthy, 2020),
no studies have yet investigated human predictions of upcom-
ing words in an auditory stimulus. Given that spoken lan-
guage carries extra-linguistic signals (i.e., prosody) used to
infer speakers’ intentions (Cole, 2015), and that these sig-
nals are integrated into neural representations (Khanna et al.,
2024), it becomes particularly important to directly compare
human behavior across modalities. We therefore aimed to
identify differences in how humans perform next-word predic-
tion in spoken versus written language, and whether these dif-
ferences drive divergences from human neural activity and/or
language models.

Here, we asked human participants to make next-word pre-
dictions during a real-world story presented as either spoken
or written language. We leveraged these predictions to eval-
uate differences in humans’ behavioral alignment to LLMs
based on the modality of the stimulus. We then used these
predictions to assess representational alignment — specifi-
cally, whether human predictions in either or both modalities

were more closely aligned to neural activity than LLM predic-
tions of the same story.

Materials and methods

Natural language fMRI dataset We analyzed fMRI data
from 8 participants (3 female, age 21-34 years) who listened
to 26 naturalistic stories while undergoing functional mag-
netic resonance imaging (fMRI). All participants listened to
the same auditory stories (range: 7:10 min - 16:53 min) taken
from The Moth podcast. One story (wheretheressmoke) was
presented to participants across five separate scan sessions
for the purpose of model evaluation.

Encoding models We trained voxel-wise encoding models
(Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016) to pre-
dict each participant’s neural activity from features of the same
natural language stimulus. We modeled each stimulus using
four feature spaces: auditory (mel-frequency spectrogram),
phoneme (CMU Pronouncing Dictionary), word-level seman-
tic (word2vec), and contextualized semantic features (GPT2-
XL). Encoding models were formalized as a banded-ridge re-
gression (Nunez-Elizalde, Huth, & Gallant, 2019) that learns a
separate regularization parameter for each feature space (in-
cluding the separate transformer layers).

We trained each model using a leave-one-story-out cross-
validation procedure (25 total folds). To evaluate the predic-
tive performance of the trained models, we averaged neural
responses across the five separate sessions of wherether-
essmoke and correlated the predicted and true timeseries.
We then identified significantly predicted voxels through a
block-wise permutation test (10 TR blocks; n=1000 permuta-
tions; (LeBel, Jain, & Huth, 2021)).

Behavioral experiment We recruited two groups of human
participants for the study (N=300 total). Both groups were pre-
sented with the validation story: wheretheressmoke. The first
group of participants (spoken condition, N=150) listened to the
story without seeing the transcript. The second group of par-
ticipants (written condition, N=150) viewed the story word-by-
word without hearing the audio track. At intervals spaced by
a minimum of 10 words, participants were asked to gener-
ate a one-shot prediction for the upcoming word. Participants
in both conditions provided responses to the same words,
and the written words were presented at the spoken rate to
mitigate timing differences between conditions. We focused
our experiment on moments when LLMs either succeeded or
failed at performing the same task (next-word prediction). To
this end, we selectively sampled content words (e.g., remov-
ing stop-words, named-entities, etc.) based on the accuracy
and entropy of GPT2-XL prediction distributions.

Alignment estimation We investigated the alignment of hu-
mans and LLMs performing next-word predictions. We de-
fined behavioral alignment as the Kullback-Leibler (KL) diver-
gence of human and LLM prediction distributions. To compare
these distributions, we limited the LLM prediction distributions
to the unique words predicted by human participants (in both



conditions). We also calculated the binary accuracy (exact
match) of next-word predictions to the ground-truth word.

We then compared whether human- or LLM-predicted
words provided better predictions of neural responses. To this
end, we substituted predicted for ground-truth words within
the original story to create three additional contextual feature
spaces: humans’ predictions from 1) spoken- and 2) written-
language (both based on the most commonly predicted word
in each modality), and 3) LLM predictions. We quantified rep-
resentational alignment as the inverse mean squared error
(MSE) of the predicted timeseries at the specific timepoints
when a word was predicted. Within this definition, lower MSE
indicates higher alignment of representations with neural ac-
tivity. We then contrasted the MSE of these predicted time-
series to determine which of the three representational spaces
better fit brain responses.

Results
Across both stimulus modalities (spoken or written), human
predictions were more accurate than LLM predictions (Fig.
1A; spoken-model: p < 0.001; written-model: p = 0.08;
spoken-written: p = 0.29). We then evaluated whether LLM
prediction distributions well represented the distributions of
words predicted by human participants. On average, the LLM
distribution exhibited significantly lower KL divergence when
evaluated against the written-language distribution as com-
pared to the spoken-language distribution (Fig. 1B; t(472) =
2.39, p = 0.017). This suggests that LLM prediction patterns
were more similar to humans in the written modality as com-
pared to the spoken modality.

Figure 1: (a) Accuracy of next-word predictions. (b) LLM pre-
diction distributions better fit distributions of humans predicting
written text. *** p < 0.001, n.s. p > 0.05.

To understand if these behavioral differences are recapit-
ulated in the alignment of neural representations, we exam-
ined the accuracy of human- or LLM-predicted words on pre-
dicting brain activity. Across the majority of significantly pre-
dicted voxels, we found that human predictions in both stim-
ulus modalities better aligned with human neural representa-
tions than LLM predicted words (Fig. 2A; qFDR < 0.05).

We then compared the representational alignment between

Figure 2: Difference in prediction alignment between (a) hu-
mans and model predictions and (b) spoken and written lan-
guage predictions. All plots are thresholded by encoding
model significance at each voxel (qFDR < 0.05).

human predictions of spoken and written language. We
found that words from human predictions of spoken language
broadly exhibited greater alignment to brain activity than pre-
dictions of written language (Fig. 2B; qFDR < 0.05). Inter-
estingly, spoken language predictions demonstrated greater
alignment than written language across the majority of audi-
tory and language related regions. This result provides a par-
allel to the divergence observed in human behavior and sug-
gests that human predictions of spoken language are more
representative of neural responses, at least during auditory
perception.

In sum, human predictions of both spoken and written lan-
guage were more accurate than LLMs. However, humans pre-
dictions of written text showed greater alignment with LLMs
than predictions of spoken language. These differences in
behavioral alignment were recapitulated in the alignment of
predicted words with human neural representations. Human
predictions better aligned with brain activity than LLM predic-
tions, and predictions of spoken language were more aligned
with neural activity than those of written language. Together,
these findings suggest that LLM predictions are less aligned
with both human behavior and neural activity than previously
assumed and highlight how the rich, multimodal nature of
spoken language may aid situational understanding to enable
more accurate predictions.
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