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Abstract

Chess, with its rich history as a metaphor for human in-
telligence, offers an excellent framework to examine ex-
pertise effects. Previous studies suggested that expert
players analyse chess boards differently from novices,
emphasizing piece relationships over visual traits. How-
ever, these studies did not explore representational struc-
ture and information processing changes in expertise,
and in what brain areas these changes may occur. Our
work bridges this gap by employing computational, be-
havioural, and neuroimaging methodologies to uncover
representational changes in expert biological and artifi-
cial systems. By comparing chess expert and non-expert
systems in humans (fMRI) and in silico (DNNs), we aim
to identify chess expertise’s representational changes.
Our results reveal similar information processing be-
tween humans and DNNs, showing a representational
and behavioural alignment between expert systems. Ad-
ditionally, experts systems show a representational re-
organization, resulting in more linearly separable repre-
sentations of relevant high-level dimensions in late pro-
cessing stages.
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Introduction

Expertise, defined as the ability to consistently achieve su-
perior performance in a specific domain, manifests through
profound behavioural and representational changes. Previ-
ous studies on expertise demonstrate that chess experts pro-
cess game-related information more effectively than novices.
They possess faster and more accurate pattern recognition
abilities, display fewer but more strategically targeted visual
fixations, and exhibit increased activations in brain regions
involved in visual recognition and strategic planning (Bilalić,
Langner, Ulrich, & Grodd, 2011; Reingold, Charness, Pom-
plun, & Stampe, 2001). Previous studies on learning have
already to some degree investigated changes in information
processing, but despite these insights there is still only limited
knowledge of how profoundly expertise can change informa-
tion processing and internal representations at the neural and
the computational level of both human and artificial intelligent
systems. In this context, chess offers unique opportunities
considering the wealth of data about changes at the cogni-
tive level and the complexity of the underlying information pro-
cessing. Our study seeks to fill this gap by investigating how
chess expertise alters information processing in humans and
DNNs. We hypothesize (i) that artificial and human experts
will exhibit distinct neural patterns for chess-relevant features



in high-level regions, reflecting their advanced game under-
standing; and (ii) a degree of behavioural and representational
alignment between expert systems. By characterizing the rep-
resentational changes observed in our participants, our study
strives to deepen our understanding of the organizing princi-
ples of learning and expertise.

Results
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Figure 1: Regression coefficients across DNN layers. The
dotted line marks the end of the visual stream and the start of
the chess processing stream.

Chess information processing is hierarchical We devel-
oped a two-stages deep neural network (DNN) comprising a
visual processing stream and a chess processing stream. The
visual stream employs a modified AlexNet (Krizhevsky, 2014)
architecture trained to convert chessboard images into struc-
tured board representations, while the chess stream uses a
publicly available AlphaZero (Silver et al., 2018) implementa-
tion trained with supervised learning algorithms. These two
streams were trained independently on distinct tasks before
being integrated for final testing. This structure allows for a
nuanced comparison with neuro-imaging data.

We tested the network on a dataset of 5,000 chessboard
images. This dataset was designed to vary along both low-
level (e.g., pixel similarity, total number of pieces) and high-
level (e.g., predicted move value by Stockfish) dimensions. To
analyze these activations, we constructed Representational
Dissimilarity Matrices (RDMs) for each layer and tested di-
mension (pixel similarity, total number of pieces, and Stock-
fish value). These RDMs were then used in ridge regression
analyses to determine how each layer’s information process-
ing related to the different dimensions of board analysis. The
coefficients from these regressions are displayed in Figure 1.

The findings underscore a hierarchical organization of infor-
mation within the network, where initial layers predominantly
handle low-level visual details, and higher layers increasingly
engage with complex chess strategies, in a progression that
is consistent with our understanding of human cognitive pro-
cesses.

Task-relevant information is encoded by experts We
conducted an fMRI study involving 20 chess experts and 13
novices. Participants performed a 1-back task on a set of
40 chessboards that varied along specific dimensions: visual
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Figure 2: SVM Decoding Results Across HCP-MMP1 ROIs:
(a) Accuracy above chance (%) on fsaverage cortical surface,
showing only significant ROIs at p < 0.01 (FDR corrected).
(b) Accuracy in right hemisphere groups of ROIs, arranged
posterior to anterior.

similarity, presence of checkmate, and the type of checkmate
based on the piece combination. Participants were asked to
choose the more strategically advantageous position between
two consecutive chess boards.

After minimal preprocessing, fMRI data was modelled using
trials as regressors and masked using the HCP-MM1 parcella-
tion (Glasser et al., 2016) projected into participants’ MNI vol-
umes. Low-level visual features and high-level strategic con-
cepts (’Visual’, ’Strategy’, ’Checkmate’) were then decoded
from the resulting beta images using multivariate decoding
techniques (see Figure 2).

The analysis indicates that high-level representations in
chess experts’ brains are linearly separable within higher re-
gions. Similar to the hierarchical information processing ob-
served in DNNs, the neural architecture in humans also ex-
hibits a hierarchical pattern: posterior brain regions predom-
inantly encode low-level visual information, anterior regions
process high-level strategic information, and the occipito-
temporal-parietal clusters integrate aspects of checkmate
type, reflecting a combination of perceptual and strategic pro-
cessing. This suggests a parallel in the way that both human
brains and artificial networks manage complex visual and cog-
nitive tasks, and identifies the brain location of chess expertise
effects.

Behavioural similarity In this analysis, we explore the error
patterns of human participants during an online familiariza-
tion task, comparing these patterns with those of two chess
models: the Lc0 (The LCZero Authors, n.d.) model, which is
trained using reinforcement learning algorithms and achieved
close-to-ceiling performance on the previously described 5000
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Figure 3: Behavioural alignment results: (a) KMeans cluster-
ing of experts by ELO and performance; (b) Error pattern com-
parisons between groups and models; (c) Hierarchical cluster-
ing dendrogram.

boards dataset, and a supervised version of AlphaZero, which
was used in previous analyses and achieved an overall lower
performance on the same dataset (µaccuracy = 0.58). Both
the human participants and the models were evaluated on the
same 40-board dataset employed in our prior fMRI study.

To further differentiate levels of expertise among human
participants, we applied K-means clustering to their accuracy
scores and Elo ratings, distinguishing between ’super-experts’
and ’experts’. We computed the similarity between the er-
ror patterns of each human group (super-experts, experts,
non-experts) and those generated by each model, using 1 -
Euclidean distance as similarity measure. The distance be-
tween humans’ and DDNs’ pattern of error was used here
as a benchmark for behavioural alignment, following other
recent studies highlighting the effectiveness of this measure
(Maniquet, Op de Beeck, & Costantino, 2024).

The results (see Figure 3) demonstrated a stronger be-
havioural alignment between the expert groups and the Lc0
model. In contrast, the non-expert group showed a higher
alignment with AlphaZero. These findings indicate that ex-
tended periods of unsupervised training might be essential
for achieving higher behavioural congruence between expert
models and human behaviour. Additionally, the results cor-
roborate the effectiveness of our dataset in distinguishing be-
tween expert and non-expert chess players.

Conclusions
Overall, our results deepen our understanding of learning in
human and artificial intelligent systems, and draw new paral-
lels between humans’ and DNNs’ internal processes.
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