Local lateral connectivity is sufficient for replicating
cortex-like topographical organization in deep neural
networks
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Abstract:

Across the primate cortex, neurons that perform similar
functions tend to be spatially grouped together. In the
high-level visual cortex, this widely observed biological
rule manifests itself as a modular organization of
neuronal clusters, each tuned to a specific object
category. The tendency towards short connections is
one of the most widely accepted views of why such an
organization exists in many animals' brains. Yet, how
such a feat is implemented at the neural level remains
unclear. Here, using artificial deep neural networks as
test beds, we demonstrate that topographical
organization similar to that in the primary, intermediate,
and high-level human visual cortex emerges when units
in these models are laterally connected and their weight
parameters are tuned wusing top-down credit
assignment. Importantly, the emergence of the modular
organization without any explicit topography-inducing
learning rules and learning objectives questions their
necessity and suggests that local lateral connections
alone may be sufficient for the formation of the
topographic organization across the cortex.
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Methods

Locally-laterally connected neural network. We
used the ResNet18 architecture [10] with two key
changes made to each convolutional layer to
implement the local lateral connections: Firstly,
inspired by the organization of lateral connections in
the visual cortex [3], we incorporated Kernel Pooling
(KP) layers [2] in all layers of the model. This layer
simulated "cortical sheets" by reshaping units in the
kernel dimension into a 2D structure, followed by
pooling on these sheets. This approach mirrors the
principles of average pooling but applied on the kernel
dimension of the layer activations. Secondly, inspired
by the physical proximity of neurons across cortical
areas that are hierarchically close (e.g. V1 and V2), we
replaced traditional zero padding with Continuous
Padding which involved appending the activation from
the preceding layer to the current layer's activation
before applying the KP layer.

Furthermore, we progressively reduced the KP kernel
size during the training, enabling topographical
organization to emerge at increasingly finer scales.
These networks were fully trained to solely minimize
the object classification cross-entropy loss on the
ImageNet dataset [6]. Several model variations with
different choices of KP operation were trained: 1)

Kernel Average Pooling (Mean): computes the average
of unit activations within a local neighborhood of each
unit. 2,3) Kernel Gaussian Pooling (Gaussian), Kernel
Mexican-hat Pooling (Mexicanhat): similar to KAP but
with a Gaussian and Mexican-hat weighting function

respectively.

Results

V1 topography. We first evaluated the topographical
similarity of our model with that in the primate V1 by
evaluating unit responses to sine grating images of
varying orientation, spatial frequency, and color,
similar to reference [1]. We observed 1) smoothly
changing selectivity when considering each of the
three factors (Fig. 1 A); 2) the similarity decayed
exponentially with distances (Fig. 1 B); 3) difference in
feature selectivity as a function of distance in an early
layer (Fig. 1 C); 4) distribution of orientation difference
within the laterally connected area. The proportion of
orientation difference < 45deg is ~60% which aligns
with the experimental observation from [3] (Fig. 1 D);
5) a tendency towards orthogonal angles between
spatial frequency and orientation gradients similar to
prior experimental work [9] (Fig. 1 E)

IT topography. We next investigated the similarity of
topographical organization in deeper layers of the
network and IT cortex by quantifying unit selectivity
using t-value measure [1]. Unit responses were
assessed concerning six distinct categories of
images, namely face, scene, body, characters,
objects, no-man’s land [7] as well as to animacy and
size [8].

We observed that 1) continuous and smooth patches
selective each of the six categories emerged in the
deeper layers of the model (blocks 3-4) that were
extended along the shallow-deep axis of the model,
similar to typical elongation of category selective
patches along the posterior-anterior axis of ventral
visual cortex (Fig. 2 A, D); 2) Pairwise unit correlations
decayed exponentially as a function of distance (Fig. 2
B); 3) the patch elongation was decreased as a
function of how fast the lateral connection range was
decayed (Fig. 2 D); 4) patch sizes were modulated by
the range of lateral connectivity (Fig. 2 E).
Furthermore, the model displayed two parallel streams
that encoded animacy of objects and their size, similar



to prior observations from human visual cortex [8] (Fig.
3).

Behavioral performance and connectivity. While the
model displayed a significant drop in its object
recognition performance  compared to its
non-topographical counterpart, its accuracy was still
substantially higher than the state-of-the-art
topographical model [1] (TDANN=43.9%,
Gaussian=53%, RN18=69.57%; Fig. 4 B).

We made two additional surprising observations: 1)
the neural network with lateral connections displayed
strong resilience to small pixel perturbations
compared to the non-topographical model that also
increased with larger lateral connection range (Fig. 4
A; AutoAttack €, = 1); 2) optimization of the locally
laterally connected model on object recognition led to
minimization of wiring cost as a byproduct, exceeding
other topographical models such as TDANN [1] (Fig. 4
C).

Conclusion. We presented a new topographical deep
neural network model by incorporating local lateral
connectivity into a typical DNN architecture (RN18)
and showed that parameter tuning in this network
using backpropagation leads to a fully topographical
model that not only reproduces hallmarks of cortical
topography in early and high-level primate visual
cortex, but also achieves improved object-recognition
performance, higher recognition robustness, and
reduces the wiring cost. Our work signifies the critical
role of local lateral connections in the cortex in
shaping its regular organization and also suggests a
possible double role of these connections in both
wiring cost minimization and robust representation
learning.
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Figure 1: V1 topography
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Figure 2: IT topography
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Figure 3: Animacy and Size
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Figure 4: Behavioral performance and connectivity
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