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Abstract
Humans learn to perform complicated tasks through in-
corporating task-relevant features into neural representa-
tions in the brain. This ability, known as feature learn-
ing, has been widely demonstrated in various brain areas
as well as artificial neural networks. However, fundamen-
tal questions, such as quantifying the degree of feature
learning and gaining mechanistic understanding of fea-
ture learning, remain elusive. In this work, we propose
the utilization of manifold capacity theory to understand
feature learning. Manifold capacity has been shown to
quantify task-relevant coding efficiency of neural repre-
sentations beyond training and testing accuracy. The in-
crease in capacity alongside learning can thus be consid-
ered a signature of task-relevant feature learning. More-
over, capacity is analytically linked to effective geometric
measures such as manifold radius and dimension. As a
consequence, the dynamics of effective manifold geom-
etry can further elucidate the underlying mechanisms of
feature learning. We demonstrate the applicability of us-
ing manifold capacity and effective geometry to under-
stand feature learning though artificial neural networks.
Concretely, we use these quantitative measures as meso-
scopic descriptors to describe different learning strate-
gies and stages throughout learning. Moreover, we use
these understanding to explain how neural networks gen-
eralize to other tasks with a distribution shift.
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Introduction
From navigating in a new city, adapting novel motor skills, to
learning new cognitive tasks, our brain undergoes changes in
its circuitry. Specifically, learning is reflected through incorpo-
rating task-relevant information and features into neural rep-
resentations (Hubel & Wiesel, 1959). Furthermore, feature
learning lends a new facet to study the underlying learning
mechanism in artificial neural networks (Farrell, Recanatesi,
& Shea-Brown, 2023). Despite extensive theoretical endeav-
ors (Geiger, Spigler, Jacot, & Wyart, 2020),(Ba et al., 2022) to

Figure 1: Understand feature learning via manifold capac-
ity and effective manifold geometry. a, Neural manifolds
are collections of neural activities corresponding to the same
task-condition in the neural state space. For example, the
neural responses to all cat stimuli constitute the cat manifold.
b, Manifold capacity quantifies the packing efficiency (i.e., the
number of manifolds per neurons) of neural representations.
The manifolds on the left have higher capacity than that on
the right because one can pack more manifolds in the neu-
ral state space. c, We propose the use of the increment of
manifold capacity to quantify the degree of feature learning.
d, The effective geometric measures in GCMC further provide
intermediate-level descriptors for different learning strategies
that lead to feature learning.

pinpoint and elucidate the genesis of feature learning in simpli-
fied models, several fundamental research inquiries persist: (i)
How can we quantify the degree of feature learning in realistic
models? (ii) How to summarize the high-dimensional changes
of features into interpretable and task-relevant descriptors?



Figure 2: Manifold capacity and effective manifold geometry quantify feature learning. a, We train a VGG-11 on CIFAR-10
with various scaling factor α (the larger the scaling factor, the lazier the training as in Ref. (Chizat et al., 2019). We show that
capacity tracks the degree of feature learning as consistent with a heuristic measure (i.e., activation stability, the percentage of
neurons over ReLU layers that, after training, are activated for the same inputs at initialization) used in Ref. (Chizat et al., 2019).
b, Effective manifold geometric measures describe the underlying learning strategy of feature learning. In these plots, the x-axis
is the effective radius and the y-axis is the effective dimension. The contour is the manifold capacity, which can be approximated
by a function of radius and dimension as shown in (Chung et al., 2018; Chou et al., 2024). We train 2-layer neural networks
on synthetic data with different learning rates and data generative models. The color from blue to red represents learning rate
from low to high. The dots with the same color correspond to the same 2-layer network during different training epoch. Left: We
train 2-layer neural networks with multiple random binary readouts. Here, by increasing the degree of feature learning (from blue
to red), the vanilla gradient descent focuses on compressing the radius. Right: We train 2-layer neural networks with Gaussian
point clouds with larger signal-to-noise ratio. Here, by increasing the degree of feature learning (from blue to red), the vanilla
gradient descent focuses on compressing the dimension. c, Using GCMC to understand a few-shot learning task. Left: We
consider the same scenario as in part (a). As scaling factor decreases (dark to light), the capacity monotonically increases while
both radius and dimension decrease, suggesting the transition from lazy to rich training. Interestingly, the radius bounces back
when the scaling factor closes to 1. Right: We measure the few-shot learning accuracy (Snell et al., 2017) of CIFAR-100 on each
model at each epoch and plot the result. The few-shot accuracy improves upon the transition to feature learning. As the scaling
factor approaches 1, the drop of few-shot accuracy is explained by the growth of radius.

What are the underlying learning strategies in different models
and learning stages? (iii) How does the improvement of fea-
tures contribute to computational benefits beyond training and
test accuracy? In particular, does improved features counter-
act a distribution shift?

The Manifold Capacity Theory (MCT) (Chung et al., 2018)
quantifies the neural manifold’s representational efficiency
through the classification capacity (Gardner, 1988), which
measures the amount of linearly decodable information per
neuron (Fig. 1a). The MCT analytically characterizes the
classification capacity as a function of the shape of a man-
ifold (Chung et al., 2018; Wakhloo, Sussman, & Chung,
2023). The effective Geometric measures from Correlated
Manifold Capacity theory (GCMC) (Chou et al., 2024) further
suggests the definition of computationally relevant geometric
terms such as effective dimension and effective radius of neu-

ral manifolds. GCMC as well as its predecessor have been
shown to capture the task-relevant structures in neural repre-
sentations in both biological datasets (Chou et al., 2024; Yao
et al., 2023; Paraouty et al., 2023; Froudarakis et al., 2020)
and artificial neural networks (Cohen, Chung, Lee, & Som-
polinsky, 2020; Dapello et al., 2021; Kuoch et al., 2023).

Results

In this work, we propose the usage of GCMC as a quantifica-
tion method for understanding feature learning. First, we show
that manifold capacity quantifies the degree of feature learn-
ing (Fig. 2a). Intuitively, manifold capacity measures how effi-
cient information is stored in neural representations for down-
stream readout. Hence, it serves as a well-normalized math-
ematical definition for feature learning. In artificial neural net-
works, we demonstrate that capacity, as a quantification for



lazy to rich learning, is well-aligned with previous methods,
such as generalization accuracy, optimization path, and ker-
nel methods (Chizat et al., 2019; Geiger et al., 2020). Sec-
ond, the analytical theory in GCMC has induced effective ge-
ometric measures to summarize the different geometric at-
tributes to efficient neural representations at the mesoscopic
level (Fig. 1d). We use these effective geometric measures
to characterize the task-relevant geometric changes in feature
learning (Fig. 2b). For example, in two-layer networks, we
demonstrate how the differences in training data and/or task
can lead to different learning strategies during learning. Fi-
nally, we use effective geometry to explain computational con-
sequences of feature learning. As an example, we consider a
few-shot learning task to study how feature learning facilitates
generalization in the presence of distribution shifts. We find
that capacity and effective radius explain the performance of
a few-shot learning task (Fig. 2c). In summary, manifold ca-
pacity and effective geometry open the door to study feature
learning across the task and representational level.
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