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Abstract
Current model-to-brain mappings are computed over thou-
sands of features. These high-dimensional mappings are
computationally expensive and often difficult to interpret,
due in large part to the uncertainty surrounding the re-
lationship between the inherent structures of the brain
and model feature spaces. Relative representations are
a recent innovation from the machine learning literature
that allow one to translate a feature space into a new co-
ordinate frame whose dimensions are defined by a few
select ‘anchor points’ chosen directly from the original
input embeddings themselves. In this work, we show that
computing model-to-brain mappings over these new coor-
dinate spaces yields brain-predictivity scores comparable
to mappings computed over full feature spaces, but with
far fewer dimensions. Furthermore, since these dimen-
sions are effectively the similarity of known inputs to other
known inputs, we can now better interpret the structure
of our mappings with respect to these known inputs. Ulti-
mately, we provide a proof-of-concept that demonstrates
the flexibility and performance of these relative represen-
tations on a now-standard benchmark of high-level vision
and firmly establishes them as a candidate model-to-brain
mapping metric worthy of further exploration.
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Introduction
The mapping of artificial (deep) neural network (ANN) repre-
sentations to biological brain activity is a now well-established
method in cognitive computational neuroscience (Kriegesko-
rte, 2015; Yamins & DiCarlo, 2016). However, given the mis-
match of dimensionality and inherent structure between ANN
and brain representations, this mapping procedure is often
complex and performed in a high dimensional space, limiting in-
terpretability and inducing significant computational overhead.

In the machine learning literature, recent work by Moschella
et al. (2023) has demonstrated that although different models
(with different architectures, objectives and training data) may
learn prima facie dissimilar representations in their original
coordinate spaces, they surprisingly preserve the relative an-
gles and distances between embedded points. In other words,
the representations they learn are actually isometries of one

another, and can be related by rotations, translations, reflec-
tions, and scaling. In order to discover the underlying common
representation space, Moschella et al. (2023) suggested to
instead embed points based on their cosine distance with re-
spect to a fixed set of anchor points. At a high level, these
‘relative representations’ can be understood as extracting the
unique fundamental similarity structure of the data which is
being learned by these different models.

In this work, we extend this use of relative representations
to the domain of model-to-brain mappings. In doing so we
find a number of benefits and interesting directions for future
research. Concretely, we find: (I) relative representations allow
for high brain predictivity scores, comparable with the original
representations, despite operating on a fraction of the dimen-
sionality; (II) higher level visual regions (e.g. Occipital Temporal
Cortex, OTC) appear to be a better match to these relative rep-
resentations than lower level areas (e.g. Early Visual Cortex,
EVC), potentially reflecting the fact that the abstract structure
of the data extracted by relative representations is also better
represented by OTC; and (III) relative representations for mod-
els can be seen as more interpretable since each axis now
denotes similarity to a single known data-point ‘anchor’.

Methods

In this section we describe how, given a stimulus set X (in
our case images from the Natural Scenes Dataset of Allen et
al. (2022)), a trained encoder model E, and corresponding
functional Magnetic Resonance Imaging (fMRI) measurements,
we can construct relative representations and use these to
compute efficient and interpretable model-to-brain mappings.

Relative Representations Let A be a size N subset of the
stimulus set X. For each ‘anchor’ a( j) ∈ A, compute its em-
bedding as ea( j) = E(a( j)) for some encoder model E. Sim-
ilarly, for each x( j) ∈ X, compute its embedding as ex( j) =

E(x( j)). The relative representation of x( j) is then given as
rE

x( j) =
(
sim

(
ex( j) ,ea(1)

)
, . . .sim

(
ex( j) ,ea(N)

))
, for some simi-

larity function sim. In this work, we use the cosine similarity
function: sim(x,y) = xy

||x||||y|| = cos(θx,y). For cosine similarity,
the relative representations are invariant to global rotations,
reflections, and rescalings, meaning if two encoders E and Ẽ
produce the same embeddings up to a rigid transformation,
then rE

x( j) = rẼ
x( j) is invariant to the choice of encoder.



Relative Representational Dissimilarity Matrix A common
method for comparing representations from models and neu-
ral data involves a Representational Disimilarity Matrix (RDM)
(Kriegeskorte, Mur & Bandettini, 2008). Explicitly, these ma-
trices are computed by taking the Pearson’s correlation coeffi-
cient (PCC) between the representations of all pairs of stimuli
from a dataset, i.e. the i’th row and j’th column of the RDM
is given as: RDMi, j = ρ(ex(i) ,ex( j))∀i, j. Interestingly, we see
that this is equivalent to a matrix of the aforementioned rel-
ative representations, where the anchor set is chosen to be
equal to the full dataset, and the similarity function is cho-
sen to be the PCC. The relative representations can therefore
be seen as a select (significantly reduced) subset of rows
of the RDM with a carefully chosen similarity function to in-
duce desired invariances. To compute what we call a Relative
RDM (RRDM), we compute relative representations for the
model first, and then compute the RDM on this. Expliclty:
RRDMi, j = ρ(rE

x(i) ,r
E
x( j))∀i, j. In this work we only compute

relative RDMs for the model embeddings in order to maintain
the physical structure of neural recording sites in the fMRI data.
In preliminary analysis, we find relative RDMs computed for
fMRI data significantly reduce the similarity of model-to-brain
mappings, and leave further analysis to future work.

Representational Similarity: cRSA, srprRSA & eRSA To
get a scalar ‘score’ of a model-to-brain mapping, a ‘repre-
sentational similarity analysis’ (RSA) procedure is undertaken
using the model and brain RDMs. Following Conwell et al.
(2023), we compute three canonical measures of similarity be-
tween the RDMs: Classical RSA (cRSA: computing the mean
PCC between all elements of the two RDMs), Sparse Random
Projection Ridge RSA (srprRSA: first apply sparse random
projection to encodings, then compute ridge-regression from
model to fMRI, measuring final correlation of regression), and
Encoding RSA (eRSA: use ridge-regression above to compute
a new RDM, and compare RDMs with mean PCC).

Models & Anchor Selection We compute each of the above
measures for a representative suite of 60 models following
Conwell et al. (2023). We first compute the baselines using the
original representations, and then compute the ‘relative’ scores
by using the model’s Relative RDM formulation. In the present
work we begin with a fixed set of randomly selected anchors
for simplicity. We present comparisons for 10, 100, & 1000
randomly selected anchors. Note that this can yield orders of
magnitude in dimensionality reduction of the model features
since the final ANN features are usually 1000’s of dimensions.

Interpretability In this work we posit that relative represen-
tations increase interpretabiltiy of model-to-brain mappings
due to the fact that each dimension of rE

x( j) now corresponds
to a similarity with an exactly known input stimulus from the
dataset. Although in this abstract we do not study this for space
considerations, this property yields an inherent meaning to rep-
resentation dimensions, allowing for future work to leverage
these for more meaningful model-to-brain mappings.

Results
In Figure 1 we show a comparison of RSA scores computed
on the original features (blue) and relative representations
(orange) based on 100 anchors for the three RSA metrics in
two regions (EVC (left) & OTC (right three)). We see that the
scores based on relative representations are comparable to
the original scores in all settings, and the gap is significantly
reduced for OTC over EVC. Furthermore, we see that srprRSA
and eRSA have equivalently small gaps between the original
and relative embeddings. In Figure 2, we compare the impact
of different numbers of anchors (10, 100, 1000) for cRSA on
the OTC region. We see that while there is a small difference,
they are surprisingly consistent even down to 10 anchor points,
emphasizing the potential for dimensionality reduction.

Figure 1: RSA scores for original and relative RDMs.

Summary
In summary, we find that by using relative representations we
can remarkably reduce the dimensionality needed to represent
model embeddings by up to two orders of magnitude while
still achieving comparable RSA scores. We further find that
these relative representations appear to match later visual
areas more closely, warranting future research into their value
as a candidate model-to-brain mapping metric. In future work
it will be interesting to study more careful anchor selection
procedures, leading to the hypothesized interpretability benefits
and potentially even better RSA scores with fewer anchors.



Figure 2: Comparison of cRSA with relative representations
using differing numbers of anchors (10, 100, 1000) for OTC.
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