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Abstract
Generative adversarial networks (GANs) hold great po-
tential as a tool for cognitive scientists, equipping re-
searchers with the ability to generate a theoretically in-
finite number of complex stimuli. For this purpose, a
good understanding of the correspondence between hu-
man and GAN representations is critical. In the present
work, we evaluated the category representations devel-
oped by conditional GANs using human category learn-
ing. Specifically, we asked whether humans can learn to
categorize class-specific GAN-generated samples, and if
so, whether they can generalize that knowledge to real
samples. Two groups of participants first learned to cat-
egorize either real or GAN-generated histology samples
depicting benign or malignant breast cancer. Then all par-
ticipants were probed for generalization to novel samples
from both image sources. Categorization performance,
as characterized by sensitivity and bias, showed no re-
liable differences between groups during training. Dur-
ing generalization, categorization performance with sam-
ples matching the image source seen during training was
maintained. Most critically, categorization performance
generalized across image sources with no loss: partici-
pants trained with GAN-generated samples were as sen-
sitive and unbiased in categorizing real samples as those
trained with real samples, and vice versa. Our results
thus support a close correspondence between how hu-
mans and deep networks represent natural categories.
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Background
Generative adversarial networks (GANs) learn a generative
model through the adversarial cooperation between two net-
works (Goodfellow et al., 2014). The generator network trans-
forms inputs from an arbitrary distribution (e.g., a multivariate
Gaussian) into samples from a target data distribution (e.g., a
specific image domain). The discriminator network learns to
distinguish real from generated samples, and its discrimina-
tion performance provides a teaching signal to the generator
network. At the end of training, the generator network creates
artificial samples that the discriminator network cannot distin-
guish from the real samples.

GANs have enormous potential as a research tool for cog-
nitive science, offering novel approaches to answer complex
methodological and theoretical questions (Goetschalckx, An-
donian, & Wagemans, 2021). However, the correspondence
between human and GAN representations is rarely directly as-
sessed. Here, we used human category learning to evaluate
the category representations developed by conditional GANs
(Mirza & Osindero, 2014), a type of GAN that can be condi-
tionalized to generate class-specific samples. We first trained
online participants to categorize real or GAN-generated histol-
ogy samples of breast cancer as benign or malignant, and we
later tested them for generalization to novel images from both
image sources. In doing so, we sought to answer: 1) whether
humans can learn the category representations in conditional
GANs, and 2) whether there is enough overlap between GAN-
generated and real category representations to enable gener-
alization across them.

Methods

Stimuli

We trained a style-based GAN (StyleGAN-v2; Karras, Laine,
et al., 2020) to generate histology samples at a 100x magnifi-
cation of human benign and malignant breast cancer, sourced
from the BreakHis database (Spanhol, Oliveira, Petitjean,
& Heutte, 2016), with adaptive discriminator augmentation
(Karras, Aittala, et al., 2020). After training with 6M images,
we achieved a Fréchet Inception Distance score of 7.76. A
preliminary pilot study revealed that unconstrained training
sets were too difficult for our human participants to learn within
the allotted time. Therefore, we selected the 144 easiest
images within each category (benign/malignant) and image
source (real/GAN), based on the distance of each image’s
VGG16 features (Simonyan & Zisserman, 2015) from a hy-
perplane separating benign and malignant categories. See
Figure 1 for some examples.

Participants

We recruited 64 Prolific workers. Participants were randomly
assigned to one of two groups (Real/GAN). Subjects with a d’
of less than 0.5 on the last block of training (see below) were
excluded from the study, leaving 27 and 23 subjects in groups
Real and GAN, respectively.



Figure 1: (A) Examples of real and GAN-generated samples.
(B) tSNE embedding of the VGG16 features for the images
used in the experiment.

Procedure

Training After instructions, participants received 4 blocks of
64 trials (32 trials per category). On each trial, a sample
was presented in the centre of the screen with the prompt
”Is this sample benign (B) or malignant (M)?”. After press-
ing a response key, participants received visual feedback for
1 s (”Correct!” or ”Error!”) and after a 1 s blank screen, the
next trial started. Groups Real and GAN were trained with
BreakHis and GAN-generated samples, respectively.

Generalization test Both groups completed a final 64-trial
block in the absence of feedback, containing 32 real and
32 GAN-generated samples (16 per category within each
source).

Results
We characterised performance via sensitivity (d’) and bias
(β), and estimated Bayesian mixed-effects models in brms
(Bürkner, 2018) for each index. We assessed the reliability of
the estimated differences by quantifying the percentage of the
posteriors’ HDI contained within a region of practical equiva-
lence (ROPE) spanning ±0.1 SDs (Kruschke, 2018).

Training Participants learned to categorize the samples
(Figure 2A), increasing their sensitivity across training blocks
(b = 0.40, 95% CI = [0.28, 0.53], 0% in ROPE), with no reliable
group differences (b = -0.06, 95% CI = [-0.53, 0.42], 30% in
ROPE). There was no reliable increase in bias nor group ef-
fects on it (b = 0.05, 95% CI = [-0.04, 0.13], 47% in ROPE, and
b = -0.07, 95% CI = [-0.19, 0.05], 32% in ROPE, respectively).

Generalization test We quantified the generalization gap
by calculating difference scores for sensitivity and bias mea-
sures from tests with real and GAN-generated samples (Fig-
ure 2B)1. These difference scores were positive if sensitiv-
ity/bias was higher for samples of the training image source
(e.g., real samples for group Real), and negative if those mea-
sures were lower for samples of the opposite image source
(e.g., GAN-generated samples for group Real). Our analy-
sis revealed no reliable differences in sensitivity across image
sources for either group (b = -0.06, 95% CI = [-0.33, 0.20],
37% in ROPE and b = -0.11, 95% CI = [-0.50, 0.28], 25% in

1Participants were as sensitive and unbiased in categorizing sam-
ples from their training image source (not shown).

Figure 2: Sensitivity (d’) and bias (β) during (A) training and
(B) the generalization test.

ROPE, for group Real and GAN, respectively). There were no
reliable differences in bias either (b = 0.41, 95% CI = [-0.08,
0.90], 11% in ROPE and b = -0.37, 95% CI = [-1.07, 0.30],
18% in ROPE, for group Real and GAN, respectively).

Conclusions

Our GAN was remarkably proficient at capturing the image
statistics of the histology samples present in the BreakHis
dataset (Figure 1B). Human participants successfully learned
categories from GAN-generated samples (Figure 2A) and,
most critically, were able to transfer category representations
acquired with either real or GAN-generated samples across
image sources (Figure 2B). This generalization occurred with
no appreciable loss, suggesting a strong correspondence be-
tween the category representations that humans and GANs
learn when presented with the same stimuli.

Thus, the current findings support the use of category rep-
resentations in GANs as a tool to study the corresponding
representations in humans, opening exciting venues for future
work. For instance, it would be possible to rearrange cate-
gory membership of the visually complex histology samples
to revisit findings established using categorization tasks built
upon visually impoverished stimuli (Ashby & Valentin, 2018).
In a more applied setting, the close correspondence in class-
specific representations in human and GANs might provide
the opportunity to devise training regimes that speed up the
acquisition of, or deepen existing expertise in radiologists (or
other medical experts), by generating tasks with high control
over sample difficulty (e.g., Roads, Xu, Robinson, & Tanaka,
2018).
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