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Abstract

Recent experiments in neurophysiology, primarily in pyrami-
dal cells, have shown that dendrites contribute to neuronal
computational capabilities with non-linear synaptic input in-
tegration. In this work we model a single neuron as a two-
layer network with non-overlapping synaptic weights and a
biologically plausible form of dendritic non-linearity, which is
analytically tractable with statistical physics methods. Ana-
lytical and numerical analysis of the model reveals key com-
putational benefits of non-linear dendritic integration over tra-
ditional linear neuron models. We find that the dendritic
non-linearity concurrently enhances the number of possible
learned input-output associations and the learning speed. At
variance with previously studied linear neuron models, we find
that the experimentally observed synaptic weight sparsity nat-
urally emerges as a consequence of non-linear dendritic inte-
gration, while the experimental synaptic weight distribution is
consistently reproduced. Non-linearly induced sparsity comes
with a second advantage for information processing, i.e. input
and synaptic noise robustness. By testing our model on stan-
dard real-world benchmark datasets inspired by deep learning
practice, we empirically observe that the non-linearity provides
an enhancement in generalization performance - a desirable
property of neurons for non-trivial information processing.

Introduction

Understanding the computational capabilities of single neu-
rons is among the most fundamental open problems in neu-
roscience. A long-standing question concerns the role of
dendrites in shaping neuronal information processing. Tra-
ditionally viewed as simple linear summing devices akin to
perceptrons, whose learning capabilities have been studied
extensively (Minsky & Papert, 1988; Gardner, 1988), this
perspective has been challenged by the recognition of non-
linear integration of synaptic inputs (London & Häusser, 2005;
Larkum, 2013; Major, Larkum, & Schiller, 2013), due to ac-
tive currents in dendrites, influenced by various voltage-gated
ionic currents. Recent studies show that dendrites signifi-
cantly impact biological learning and memory, performing lin-
ear or non-linear input processing depending on their spa-
tial arrangement (Polsky, Mel, & Schiller, 2004). This insight
has led to comparisons of neurons to complex computational
models, from to multi-layer perceptrons (Poirazi, Brannon, &
Mel, 2003) to cascades of linear-nonlinear processes (Brunel,
Hakim, & Richardson, 2014; Ujfalussy, Makara, Lengyel,
& Branco, 2018). Overall, a potential connection between
dendritic mechanisms and machine learning has been pro-
posed (Pagkalos, Makarov, & Poirazi, 2024). Here, we set
out to study the computational capabilities of a single neu-
ron model with dendrites implementing experimentally ob-
served non-linear integration and with sign-constrained pos-
itive synapses modelling excitatory connectivity. In that two-
layer sign-constrained neuron model with a biologically plau-
sible saturating non-linearity, neuron computational abilities
are significantly enhanced. This includes improvements in the

capacity for input-output associations, training speed, noise
robustness, and generalization to new inputs. Additionally,
this model replicates the experimentally observed synaptic
weight distribution and sparsity without needing ad hoc robust-
ness parameters, as required in linear neuron models (Brunel,
Hakim, Isope, Nadal, & Barbour, 2004; Brunel, 2016).

Single neuron model
We consider a single neuron model that transforms N binary
synaptic inputs ξi = {0,1}N into a binary output σ̂= {0,1}. In
the standard linear perceptron model, the neuronal output is
σ̂ = Θ

(
∑

N
i=1 Wiξi −T

)
, where Θ is the Heaviside function, W

is a vector of synaptic weights, typically optimized by a learn-
ing process, and T is a threshold. Here, motivated by ex-
periments that have revealed significant non-linearities in the
summation of inputs within single dendritic branches, but not
across branches (Polsky et al., 2004; Larkum, 2013), we con-
sider a generalization of the perceptron model with K dendritic
non-overlapping branches, and non-linear summation of in-
puts within each dendritic branch. In this model, the neuronal
output is σ̂ = Θ(∆), where ∆ = 1√

K ∑
K
l=1 g(λl)−

√
Kθs is the

total input to the soma, proportional to the sum of the outputs
of all dendritic branches; g is a non-linear function describing

the dendritic non-linearity; λl =
√

K
N ∑

N/K
i=1 Wliξli −

√
N
K θd is

the total input to dendritic branch l, which is a linear sum of
inputs to this branch ξli ∈ {0,1}N/K , weighted by synaptic
efficacies Wli. Usually, only the synaptic weights of excita-
tory (glutamatergic) pre-synaptic neurons are explicitly mod-
eled and subject to plasticity, while inhibitory (GABAergic)
synapses are considered static. In our model the latter are
grouped under the two somatic θs and dendritic θd thresholds,
so that each synaptic weight Wli ≥ 0.

Dendritic non-linearity Experiments in neocortical pyrami-
dal cells have indicated that the dendritic output is roughly lin-
ear at low stimulation intensities, and that it then increases in
a strongly non-linear fashion beyond a threshold, before sat-
urating (Polsky et al., 2004). To reproduce the shape of the
experimentally-recorded function, we consider the dendritic
non-linear activation

gpolsky(x) =

{
max(0,x) x < xmin

2(1−xmin)

1+e−γ(x−xmin)
−1+2xmin x ≥ xmin

(1)

where xmin is the non-linearity threshold, and γ describes the
strength of the non-linearity. We refer to this non-linearity as
the Polsky transfer function, which interpolates between ReLU
(when xmin → ∞) and the step function for xmin = 0 when
γ → ∞. Note also that in the experiments of ref. (Polsky et
al., 2004), only excitatory inputs are considered, and conse-
quently only the positive side of the dendritic non-linearity is
probed. For consistency, we set g to zero on the negative
side.

Learning tasks We consider a standard classification task
with the objective of learning a dataset D = {ξ

µ,σµ}P
µ=1 com-



posed of P binary random input patterns ξ
µ
li and labels σµ that

are both i.i.d. Bernoulli variables with P(ξµ
li = 1) = fin (input

coding level) and P(σµ = 1) = fout (output coding level) re-
spectively. The task of the neuron is to correctly classify all in-
put patterns, i.e. produce the correct output σ̂=σµ when input
ξ

µ is presented. This classification task (often called ”storage
problem” in the literature), whose goal is to learn the asso-
ciations by progressively modifying the synaptic weights, has
been studied extensively for both perceptron and committee
architectures (Gardner & Derrida, 1988; Baldassi, Malatesta,
& Zecchina, 2019; Zavatone-Veth & Pehlevan, 2021), either
by optimizing directly the number of errors or some surrogate
loss functions. On the numerical side only, we also study clas-
sical benchmark classification tasks in machine learning, pro-
viding realistic correlated datasets, such as MNIST, Fashion-
MNIST and CIFAR-10.

Computational capabilities

Critical and algorithmical capacities

To investigate the memory-related properties of our single
neuron model in the storage setting, one leverage on asymp-
totic methods from statistical physics (Engel & Van den
Broeck, 2001). Given a density of patterns α = P

N , and in
the asymptotic limit where the total number of dendrites N
and the number of branches K are N,K → ∞ with K

N → 0,
it is possible to analytically study what is the typical maximum
threshold αc for which the complexity of the model is sufficient
to classify the activity patterns correctly. This value of αc is a
function of the external parameters θd , θs, fin/out of the model
and of the specific choice of the activation g. With a linear
activation g(x) ≡ x, our model behaves like a traditional one-
layer neuron model, reproducing well-known results about crit-
ical capacity as explored in prior studies (Brunel et al., 2004;
Brunel, 2016). Instead, by taking advantage of a non-linear
integration of synaptic inputs as in (1), one can make the
storage capacity of the model αc to arbitrarily increase with
respect to the linear case. By playing with the dendritic in-
hibitory threshold θd when g(x)≡ Polsky(x), one can strongly
alters the expressivity of the model and switch from the lin-
ear regime when θd → 0 and α

perc
c ( fin/out = 0.5) ∼ 1 to high

values of αc when θd ≫ 1. On the algorithmic side, using
the SGD and LAL (Barkai, Hansel, & Sompolinsky, 1992) al-
gorithms (modified for positive weights) with optimally tuned
hyper-parameters, we demonstrate that non-linear models
can achieve higher algorithmic capacities than linear mod-
els, despite the non-convexity of the optimization challenge.
Plus, the non-linear model requires fewer training epochs to
perfectly learn a dataset compared to its linear counterpart,
indicating enhanced learning speed thanks to dendritic non-
linearities.

Distribution of synaptic weights and sparsity

The distribution of synaptic weights, considered to be informa-
tive of the brain learning processes, began to be observed in
the early 2000s (Isope & Barbour, 2002). Electrophysiological
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Figure 1: (left) Experimental distribution of synaptic weights
compared with the analytical prediction. (right) Fraction of
silent synapses as a function of the dendritic inhibition for Pol-
sky (xmin = 0.33,γ = 15) and ReLU non-linearities.

studies on various types of neurons have consistently found a
large fraction of silent synapses. In neocortex pyramidal cells,
the authors of (Song, Sjöström, Reigl, Nelson, & Chklovskii,
2005) report a value for the fraction of silent synapses of about
90%. In Fig. 1 we successfully align the theoretical synaptic
weight distribution of our non-linear neuron model with exper-
imental observations (Song et al., 2005) of pyramidal cells.
We set input and output coding levels at fin/out = 0.05, ad-
justing the dendritic threshold to match the experimental av-
erage synaptic weight, and tuning the somatic threshold to
achieve a 90% fraction of silent synapses. The critical ca-
pacity αc ≃ 9.26 corresponding to the analytical curve, can
give us an estimate of the constraint density at which pyra-
midal neurons operate. To achieve the desired 90% fraction
of silent synapses in the Polsky case, we increased the value
of θd , while keeping other model parameters fixed (Fig. 1).
Unlike the perceptron case, where achieving similar levels of
sparsity requires adding a predefined robustness adjustments
during learning (Brunel, 2016), the non-linearity in dendrites
naturally induces sparsity in our setting.

Noise robustness and generalization
From an algorithmic standpoint, our numerical simulations
(for both SGD and LAL) aligns with the theoretical findings.
First, we assess robustness to input noise by flipping training
set pattern entries with a probability ρ. Instead, for synaptic
noise robustness, we introduce multiplicative Gaussian noise
to the weights and compute the change in training errors.
In both cases, the non-linear model keeps a robust perfor-
mance against input and synaptic noises, enhancing both
stability and performance under noisy conditions. To evalu-
ate the generalization capabilities of our neuron model, we
conducted binary classification tasks using standard machine
learning datasets: MNIST, Fashion-MNIST, and CIFAR-10. In
all cases, the update model of neuron outperforms its linear
counterpart.

Conclusions
We explored a biologically inspired two-layer neural network
model featuring non-linear dendritic integration as observed
in neocortical pyramidal cells. Our findings highlight the ad-
vantages of dendritic non-linearity, notably enhancing neuron



expressivity across different metrics compared to the linear
model: storage capacity, sparsity, robustness, and general-
ization capabilities.
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