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Abstract

Convolutional Neural Networks (CNNs) excel in many visual
tasks but are highly sensitive to slight input perturbations that
are imperceptible to the human eye, often resulting in task
failures. Recent studies indicate that training CNNs with reg-
ularizers that promote brain-like representations, using neural
recordings, can improve model robustness. However, the re-
quirement to collect neural data restricts the utility of these
methods. Is it possible to develop regularizers that mimic
the computational function of neural regularizers without the
need for direct neural recordings, thereby expanding the us-
ability and effectiveness of these techniques? In this work,
we inspect a neural regularizer introduced in Li et al. (2019)
to extract its underlying strength. This regularizer uses neural
representational similarities, which we find also correlate with
pixel similarities. Motivated by this finding, we introduce a new
regularizer that retains the essence of the original but is com-
puted using only image pixel similarities, eliminating the need
for neural recordings. We show that our regularizer signifi-
cantly advances model robustness for a wide range of black
box attacks. Our work opens the door to explore how biologi-
cally motivated loss functions can be used to drive the perfor-
mance of artificial neural networks using a method accessible
to the broader machine learning community.
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Introduction

Convolutional Neural Networks (CNNs) have achieved high
performance on a variety of visual task such as image classi-
fications, image segmentation, object recognition etc. Despite
their huge success, Szegedy et al. (2013) found that adding
small perturbations to an image that are nearly imperceptible
to the human eye, can mislead the network to misclassify that
image. These perturbed images were coined adversarial im-
ages and represent a large threat to computer vision models.
Recent studies have shown that deep neural networks trained
to emulate brain-like representations, are more resistant to ad-
versarial attacks (Li et al., 2019; Safarani et al., 2021; Li et al.,
2023). In particular, Li et al. (2019) showed that by adding a
loss term or regularizer that drives the CNN to align its repre-
sentational similarities (Kriegeskorte et al., 2008), with those
of mouse primary visual cortex (V1), significantly increases
the network’s robustness to Gaussian noise and adversarial
attacks. Using auxiliary loss functions to steer models towards
brain-like representations is referred to as neural regulariza-
tion.

In this work, we take a deeper look at this similarity loss term
or regularizer introduced in Li et al. (2019). We explore how

this biologically inspired loss term can be used to increase the
robustness of deep neural networks in a simple and accessi-
ble way, that does not require the use of large scale neural
recordings, which can be quite costly to obtain and may re-
quire additional computational cost to process.

We evaluate model robustness on black box attacks, where

the attacker does not have access to model parameters as
opposed to white box attacks. We show that the similarity
loss term drives the network to be more robust towards a wide
range of black box attacks when the similarity targets are ex-
tracted from the regularization image dataset directly rather
than from neural responses. We also demonstrate the suc-
cess of this method by applying it to different datasets. Our
work shows how that the similarity loss term can be utilized
to increase the robustness of a model using a simple method
that is accessible to any user. Our work also opens the door to
explore how biologically inspired loss functions can be broadly
used to enhance the performance of artificial neural networks.

A Similarity Loss Neural Regularizer

Li et al. (2019) introduced a similarity loss L, as a neural
regularizer to enhance the robustness of CNNs against ad-
versarial attacks. The total loss function L has the form,

L = Ligsk + OLgim (1)

with Lgjm defined as,

2
Lsim = (arctanh(Sg.NN) _ al’Ctanh(SE?rget)> )

o is a parameter that sets the regularization strength, and
SENN and S are the CNN's and target's representational
similarity between images i and j, respectively.

Li et al. (2019) used a ResNet (He et al., 2016) trained for
image classification task. The neural data was collected from

the primary visual cortex (V1) while the mouse was looking
at images from ImageNet dataset. However, Li et al. (2019)
did not use the neural responses directly to compute S;7°°,
rather they utilized a predictive model (Sinz et al., 2018) to es-
timate neural responses, a step which they argued is key for
denoising the measured neural data.

Method

We inspect the similarity loss Lgm in eq.(2) to distill the
method introduced in Li et al. (2019) and make it more
accessible to general users who usually do not have access
to neural recordings. We first observe that the response
similarities computed from the predictive model, which is
used as a proxy for the neural data, correlate well with the
similarities computed directly from image pixels (Fig.1). This
observation may not be surprising since V1 is the first visual
processing area in the cortex.

Indeed using image pixel similarities as target similarities in
Lsim, that is setting SE?rget to Sf}xe' enhances the model’s ro-
bustness to some attacks (see the blue plots in Fig.2 and
Fig.3). However, we find that if we modify the target simi-
larities by defining

1, ST > Th,
—1, it S < —Th, (3)
0, if|SP<Th

Th __
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Figure 1: Correlation between the predictive model used in Li et al.
(2019) and image pixel similarity. We trained more than 3 models
on 6 distinct scans to predict neural responses and averaged their
resulting representational similarity. We observe that the representa-
tional similarity correlate with the image pixel similarity.

we can further enhance the model’s robustness to a wide
range of black box attacks, as shown in section Main Re-
sults below. Th € (0,1) is a tunable thresholding parameter.
Therefore, in our method Sﬁrget is simply S7". We note that in
practice we modified the value 1 and —1 in eq. (3) by a very

small number € since we apply the arctanh function to Sffjrget

(€9.(2))-

Main Results

Note that we tune the (Th,a) pair for specific classification-
regularization datasets combinations.

1. Robustness to Random Noise

We show that regularizing a CNN with S7” as target similarity
in the regularizer leads to a large increase in the model robust-
ness to random noise when compared to an unregularized
model. In Fig.2 we show examples of ResNets trained on im-
age classification tasks and regularized by different datasets.
Fig 2a shows that a ResNet18 trained to classify MNIST
dataset is significantly more robust at high noise level without
incurring any loss on distortion-free images. A similar gain
in robustness is observed when training on CIFAR10 and CI-
FAR100 while regularized by ImageNet (Fig 2b, 2c) at the ex-
pense of a slight loss in accuracy to distortion-free images.
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Figure 2: Robustness to Gaussian noise is shown for (a) models
classifying MNIST when regularized by MNIST images (v =4, Th =
0.2) and (b) models classifying CIFAR10 and (c) CIFAR100 that are
regularized on ImageNet images (o« = 10 and Th = 0.8). Shaded
areas represent the standard error of the mean (SEM) across seven
seeds per model.

2. Robustness to Stronger Black Box Attacks

The increase in robustness achieved by using S™" as target
similarity in the regularizer, also holds for stronger attacks,
such as transferred Fast Gradient Sign Method attack (FGSM)
(Goodfellow et al., 2014) and decision-based Boundary Attack
Brendel et al. (2017) (results not shown here). In Fig.3 we
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Figure 3: A ResNet18 classifying CIFAR10, regularized on (a) Im-
ageNet with (o« = 10, Th = 0.8) and (b) CIFAR10 with (a0 = 10,
Th = 0.8) is evaluated against transferred FGSM (Goodfellow et al.,
2014) perturbations from an unregularized model. Shaded areas
represent the SEM across seven seeds per model.

show that a ResNet18 trained to classify CIFAR10 and regu-
larized by ImageNet (Fig.3a) and CIFAR10 (Fig.3b) shows an
increase in robustness against transferred FGSM attack.

3. Robustness Across Dataset Combinations

Although we only show examples of specific classification-
regularization dataset combinations, we observe that regular-
izing across various combinations of datasets leads to an in-
crease in the model’s robustness against a wide range of black
box attacks (Gaussian, Salt and Pepper and Uniform noise,
transferred FGSM and decision-based Boundary Attacks).

Experimental Set up

All models were trained by stochastic gradient descent on
a NVIDIA A100-SXM4-40GB GPU. Models classifying Cl-
FAR100, CIFAR10, MNIST were trained during 60, 40 and
20 epochs respectively. Training and regularizing a ResNet18
and a ResNet34 on CIFAR10 and CIFAR100 took in average
34 min and 48min to run, respectively. We used a batch size
of 64 for the classification pathway and a batch of 16 image
pairs for the regularization pathway. We use the same learn-
ing schedule as in Li et al. (2019). Models were trained using
Pytorch (Paszke et al., 2017). All code will soon be publicly
available on Github.

Conclusion

Extracting working principles of the brain to advance Al is a
long term goal of neuroscience. Working towards this goal, we
showed that a neuroscience inspired regularizer capitalising
on pixel representations can successfully increase CNN ro-
bustness without the requirement of measuring and process-
ing large scale neural recordings. Our method has proved
to be successful for various combinations of classification
datasets (MNIST, FashionMNIST, CIFAR10, CIFAR100) and
regularization datasets (MNIST, FashionMNIST, CIFAR10, Cl-
FAR100 and ImageNet), as well as for a wide range of black
box attacks while preserving a high accuracy on distortion-
free images. This work is an encouraging step towards dis-
secting the working of neural regularizers to explore how they
can be used to enhance machine learning model performance
in a way that is accessible to the broader machine learning
community.
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