
High-resolution tracking of internal model formation using 
automated live-in training 

 

Rifqi O. Affan (roaffan@bu.edu) 
Graduate Program for Neuroscience, Boston University 

Boston, MA 
 

Benjamin B. Scott (bbs@bu.edu) 
Department of Psychological and Brain Sciences and Center for Systems Neuroscience, Boston University 

Boston, MA 
  



Abstract: 

The ability to acquire and use an internal world model to 
plan actions is a hallmark of general intelligence. How 
this adaptive mechanism develops throughout learning 
and which neural mechanisms underlie it are unknown. 
Here we used an automated training system to collect 
data 24 hours a day, 7 days a week from rats learning and 
performing a two-step decision-making task designed to 
dissociate model-based planning from model-free 
strategies. The live-in system allowed self-paced, 
around-the-clock training, providing high-temporal 
resolution assessment of learning in the two-step task. 
Furthermore, this system allowed behavioral data 
collection at high temporal resolution and revealed how 
model-based planning emerges during learning. These 
data indicate that rats rapidly adopted an internal model 
of the two-step task and exhibited a model-based 
planning strategy early in training. 

Introduction 

In sequential decision-making tasks where reward 
contingencies are probabilistic, humans employ an 
internal model of the task statistics to maximize rewards 
(Daw et al., 2011). Like humans, rats employ a model-
based strategy to solve similar tasks, providing 
opportunities for studying the neurobiological 
mechanisms that underlie this behavior (Miller et al., 
2017, 2022). However, whether such strategies are 
gradually developed in rats and whether they are robust 
against overtraining is an open question (Redish, 
2016). Moreover, the neural circuitry and computations 
driving the emergence of this behavior are unknown 
and insights from experimental work may inform efforts 
in advancing artificial intelligence. Here, we 
implemented an automated live-in operant system that 
allowed rats to engage in self-paced training on the two-
step decision-making task and provided behavioral 
measures across learning stages.  

Methods 

Rats were trained to perform a two-step task in a six-
port operant chamber (Miller et al., 2017). In the first 
step of the task, a rat initiates a trial by poking its nose 
into the top-center port and then chooses one of two 
top-side ports (Figure 1a, i-ii). One top-side port 
commonly activates the LED in the bottom-left port 
(p=80%) and rarely activates the bottom-right port 
(p=20%) in the second step of the task, while the other 
top-side port has the opposite consequence. Once a 
decision is made, the rat must initiate the second step 
by poking into the bottom-center port (Figure 1a, iii). 
One of the bottom-side ports is then illuminated, 
depending on the rat’s choice in the first step (Figure 
1a, iv). The rat must enter this active port to obtain a 
sucrose reward. The reward probability at each of the 

bottom-side ports is either 80% or 20% and is randomly 
flipped at random intervals (Figure 1b-c).  

  

Figure 1: (a) Schematic of trials in two-step task. (b) 
State diagram describing task rule. (c) An example 

behavioral session from one example rat. 

Results 

Rats learn the two-step task through self-
paced training in an automated live-in system. 

We implemented the two-step task in a live-in operant 
system, which allowed for self-paced training. Rats 
performed trials throughout the day and night, exhibiting 
variable 24-hour cycles of task engagement (Figure 2a 
and b). Peak activity occurred during the dark period of 
the rats’ light/dark cycle (median = 6th hour, 
interquartile range = 3.5 to 7.8 hrs into darkness).  

 

Figure 2: (a) Rats performed the task around the 
clock in the live-in system. (b) Number of trials rats 

performed at different hours of the day. (c) Rats in the 
live-in system performed similar numbers of trials per 

day (503 ± 303 trials/day) compared to those 
classically trained through daily 2-hour sessions (445 ± 

178 trials/day). 



Rat performance in the live-in training condition 
matched those exhibited by rats trained in 2-h daily 
sessions as assessed by several metrics (Figure 2c and 
Figure 3a). First, we observed similar rates of choice 
adjustment following reward probability flips.  Second, 
we observed similar asymmetries in response time (RT) 
for rare and common transitions (Miller et al., 2017 
Akam et al., 2021; Figure 3b). Finally, using a trial-
history regression analysis and mixture-of-agent model 
fits (Miller et al., 2017, 2022), we show that rats trained 
in the self-paced condition adopted a model-based 
strategy like those trained in daily 2-h sessions (Figure 
3c and d). Together these results suggest that rats 
exhibit similar planning strategies in the live-training 
system and conventional daily training systems. 

 

Figure 3: (a) Rate of choosing the better option 
following a reward probability flip. (b) RT in the second 

step following common and rare transitions. (c) 
Behavioral strategy index based on trial-history 

regression of rat choices. (d) Weight parameters from 
Mixture-of-Agents model fit to rat data. 

Model-based decisions emerge rapidly. 

Next, we used the high-temporal resolution behavioral 
data generated by the live-in system to evaluate 
learning in the two-step task. We first looked at how 
model-based planning emerged using trial-history 
regression. A rolling estimate of strategy indices 
indicated that model-based decisions increased over 
the first 1000 trials (Figure 4c), while other behavioral 
patterns, such as win-stay/lose-switch, perseveration, 
and bias, were stable throughout training. 

We next evaluated the emergence of RT asymmetry 
for rare and common transitions (Akam et al., 2021; 
Castro-Rodrigues et al., 2022; Miller et al., 2017), which 
is thought to reflect knowledge of the transition 
structure.   Surprisingly, RT asymmetry was observed 
during an earlier shaping stage of training (Figure 4d-
e). In this stage, animals made no decision, but simply 
followed light sequences through trials with both rare 
and common transitions. This result indicates that rats 

learned action-outcome transitions (i.e., the internal 
model of the task structure) during the shaping period 
and readily used it to exploit rewards during training. 
This observation resembles previous findings from 
maze-based tasks where rats form an internal model of 
the environment through latent learning (Tolman, 
1948). Interestingly, we also observed a transient 
increase in the asymmetries during the first 1000 trials 
of the training stage, which was also the period when 
model-based planning first emerged (Figure 4c-d). 

 

 

Figure 4: (a) Rolling estimate of behavioral indices 
during learning. (b) Rat performance during learning. 
(c) Response time ratio during shaping and training 

stages. 

Conclusions 

Our results demonstrate that a fully automated live-in 
operant system provided rich behavioral data across 
daily cycles and learning stages. Using this system, we 
find that rats develop a model-based strategy early 
during learning and continue to leverage it across 
thousands of trials to maximize rewards. Future studies 
could exploit this rapid form of learning to study the 
neural mechanisms of model formation.  
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