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Abstract
This research provides a comprehensive analysis of con-
textual information representation in state-of-the-art con-
volutional neural networks (CNNs) trained on ImageNet
and Places365 datasets for object and scene recognition
tasks. While current CNN models excel at object de-
tection and image classification, our study investigates
how these networks capture relationships between ob-
jects and scenes. We demonstrate that objects within re-
lated scenes exhibit closer contextual associations com-
pared to those in unrelated contexts. Moreover, we inves-
tigate the effects of training and different CNN architec-
tures on this relationship, providing insights into the nu-
anced representation of contextual information in deep
learning-based computer vision systems. Dataset col-
lecting open-source images spanning 50 diverse contexts
with each comprising of objects and related scenes im-
ages observed in that context was used in this analysis.
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Background
This paper explores how deep convolutional neural networks
(CNNs) represent objects in scenes and whether single ob-
jects are represented similarly to the scenes in which they
are typically found. In human vision, context facilitates ob-
ject recognition and understanding (Biederman, Mezzanotte,
& Rabinowitz, 1982). We explore whether context is also in-
herent within CNN processing of objects. Critically, we ex-
amine how training may affect object representations within
the CNN and whether those representations include infor-
mation about the context in which the objects are typically
found. Previous research has shown that objects in similar
contexts are represented more similarly within a CNN, sug-
gesting CNNs do extract the contextual information of objects
(Aminoff, Baror, Roginek, & Leeds, 2022), (Bracci, Mraz, Ze-
man, Leys, & Op de Beeck, 2023). Our study employs clus-
tering of network responses to analyze object and scene rep-
resentations after training on different datasets and tasks.

Methods
Stimuli
The dataset included RGB images of objects against a white
background and pictures of complete scenes. 50 contexts
were used to explore the relation between object and scene
representations. Each context included images of a scene
and two objects that commonly occur in the scene. Impor-
tantly, all scene images omitted the associated two objects.
For example, a living room picture without a television, if televi-
sion was an associated object. A total of 600 images obtained
from the BOLD5000 dataset (which includes pictures from Im-
ageNet, COCO, and the SuNS image dataset (Chang et al.,
2019)) and from Google Image Search were used. The 600
pictures depicted 50 unique contexts, each featuring an object
or the related scene with 4 distinct exemplars. We used the
second object of each context to construct a second dataset

to replicate findings from the analysis run on the first object.
Figure 1 shows stimulus examples.

Architectures and Pretraining

The study primarily utilized AlexNet (Krizhevsky, Sutskever, &
Hinton, 2012) and ResNet (He, Zhang, Ren, & Sun, 2016) ar-
chitectures (18 and 50 layers; represented in pytorch as 11
and 8 layers, each with multiple sub-layers) pre-trained on Im-
ageNet (Deng et al., 2009) and Places365 (Zhou, Lapedriza,
Khosla, Oliva, & Torralba, 2017) datasets. Pearson’s correla-
tion computed image representation similarity for each layer
for all images. The values of interest were the similarity of the
network representation of the full scene, in comparison to the
related key object across the layers.

Figure 1: Sample images from Objects-Scenes dataset, in-
cluding 4 images of objects (2 images from each of 2 object
groups) and 4 images of related scenes in each of 2 contexts
(labeled vertically in each row).

To assess this similarity, we used a ratio of within con-
text similarities to out of context similarities. The out of con-
text similarities were established using the correlations of the
objects with unrelated scenes, e.g., a steering wheel and
a kitchen. In-out ratios quantified representation evolution
across layers, training, and network architectures.

In−Out Ratio =

1
Nin−context

∑(i, j) ε C, i ̸= j sim(Oi, S j)

1
Nout−context

∑(i, j) ε C, jεC′ sim(Oi, S j)
(1)

Results

A repeated measures ANOVA assessed how similarity be-
tween an individual object and a scene was modulated by
architecture, training, or layer. The values at three different
layers in each of the networks were extracted to represent low
(layer 1), middle (layers 6 and 5) and top layers (layers 11 and
8) in AlexNet and ResNet architectures, respectively. Any ratio
values across the 50 different contexts within a layer that were
three times the standard deviation of the mean were consid-
ered outliers and removed from the analysis.

The first network comparison was between AlexNet and
ResNet50. When examining the similarity between object 1



Table 1: Comparison between AlexNet and ResNet50
Object 1 Object 2

df F Sig Partial Eta Squared df F Sig Partial Eta Squared
Network (1,41) 0.119 n.s. 0.003 (1,38) 0 n.s. 0
Training (1,41) 5.385 0.025 0.116 (1,38) 0.64 n.s. 0.017
Layer (2,82) 2.002 n.s. 0.047 (2,76) 1.369 n.s. 0.035

Network x Training (1,41) 6.149 0.017 0.13 (1,38) 3.917 0.055 0.093
Network x Layer (2,82) 0.558 n.s. 0.013 (2,76) 0.068 n.s. 0.002
Training x Layer (2,82) 8.285 0.006 0.168 (2,76) 1.08 n.s. 0.028

Network x Training x Layer (2,82) 2.078 n.s. 0.048 (2,76) 1.811 n.s. 0.045

and the related scene, we did not find a main effect of net-
work or layer, however there was a significant effect of train-
ing (p < .025), Table 1. There was also a significant inter-
action of network × training (p < .017); and layer × training
(p < .006). As can be seen in Figure 2, ResNet50 demon-
strated an increase in similarity between the representation of
the individual object and the respective scene in the high layer,
but only when trained on Places365 (p < .001). In AlexNet,
there was no significant difference in the high level between
the two types of training. However, there was a slight increase
in similarity when AlexNet was training on ImageNet for the
low layer (p < .007) and the middle layer (p < .016).

Each context (N=50) had two different related objects.
Between-group analysis demonstrated no difference between
the objects, and thus the data from both objects were used
in the analysis. We used the data analysis with the second
object to replicate results that were found with the first ob-
ject. In the ANOVA with the second object, there was only a
significant interaction of network x training (p < .055), repli-
cating the effect of training on network found with the first ob-
ject. Again, the only comparison that reached significance
was for ResNet50 in the high layers, where the similarity be-
tween object 2 and the scene was much higher when trained
with Place365 compared with ImageNet (p < .001).

(a) (b)

Figure 2: Training and architecture effects on in-out ratios
across the layers of (a) AlexNet and (b) ResNet50

In addition, we compared whether there would be a differ-
ence for more shallow (ResNet18) and deeper (ResNet50) ar-
chitectures. We used an ANOVA to test how the similarity
between the object and the scene representation changed as
a function of network, training, and layer. Here, we found a
significant main effect of training (object 1: p < .052; object 2:

p < .012); and layer (object 1: p < .068; object 2: p < .01).
We also found a significant interaction between training x layer
(object 1: p < .059; object 2: p < .011). In this case, there did
not seem to be an effect of depth of an architecture. However,
the effect that the highest layer showed the greatest similarity
between object and scene when trained with Places365 that
was found in ResNet50 (object 1 p < .001; object 2 p < .001)
was replicated in ResNet18 for the second object (object 2
p < .028; object 1: numerically higher, but not significant).

Discussion
Context is important for human vision to facilitate object recog-
nition and understanding. We asked whether context was
also captured and potentially utilized by CNNs. Prior work
has shown object contextual relations implicitly learned at up-
per layers of diverse networks trained for object recognition
(Aminoff et al., 2022). In the present work, we observe im-
plicitly learned relation of objects to related scenes for ResNet
trained on Places365. Notably, this object-scene relationship
is not learned when training on ImageNet. While object sur-
roundings are included in ImageNet, including typical nearby
objects, these surroundings usually are not sufficiently broad
in spatial scale to generalize associations between focused
object pictures and broad scene images. Weaker context
learning also may result from the training aims of ImageNet,
labeling objects and not scenes. Places365 training aims to
label scenes. Thus context information may be inherently
learned in a network trained on Places365.

Object-scene relations may be learned from Place365 by
AlexNet, but the heightened in-out-ratio is not significantly
above the chance value of 1.0. The greater depth and com-
plexity of ResNet may enable it to implicitly learn object-
specific representations in earlier layers prior to generating
the final scene label at the top layer. Alexnet’s smaller size
may not afford this power. Indeed, context learning does not
appear to crystalize until the top layer of ResNet, similar to
inter-object context relations found in (Aminoff et al., 2022).

The results of this study emphasize the importance of train-
ing and how results should be interpreted within the context of
how the network was trained.
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