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Abstract
Understanding the dynamics of neural representations is
crucial for elucidating the mechanisms of visual recog-
nition in the primate brain. Here we investigate the rep-
resentational dynamics of recurrent convolutional neural
networks (RCNNs) optimized for face-identification and
object-recognition tasks. Using representational sim-
ilarity analysis (RSA), we observed that only models
that were trained for face identification showed a late-
emerging prominent distinction of identities as seen in
the monkey face patch AM. Interestingly, early model re-
sponses (to a diverse set of images including human
faces, monkey faces, and non-face objects) strongly sep-
arated the objects from faces. Our results also show that
models that were trained simultaneously on both face
identification and object recognition were more likely to
show the signature of mirror symmetric viewpoint tun-
ing in their intermediate representations as has been re-
ported for monkey face patch AL. These findings suggest
that the dynamics of face recognition that emerges in a hi-
erarchical recurrent neural network prioritizes category-
level recognition at early stages, triggering category-
specific computations that enable individual-level recog-
nition.
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Introduction
Neurons with selectivity for different categories are found in
higher areas of the primate ventral visual pathway. A well
characterized network of ventral cortical areas are the face
patches, where neurons respond more to faces than non-
faces (Hesse & Tsao, 2020). The face patches form a coarse
hierarchy of areas that become progressively more identity-
selective and view-invariant (Freiwald & Tsao, 2010). A fun-
damental ongoing debate in the field is whether (a) features for
all categories span a more domain-general multivariate repre-
sentational space with different categories forming clusters in
that space (Vinken, Prince, Konkle, & Livingstone, 2023) or (b)
category-selective cells are specialized for detecting features
associated with a specific category (Dobs, Yuan, Martinez, &
Kanwisher, 2023) (Note that (a) and (b) are not mutually ex-
clusive, but (b) makes a strong claim that certain neurons con-
tribute exclusively or primarily to the representation of certain
categories.)

These two views can be combined into a more dynamic
view of category processing (Sugase, Yamane, Ueno, &

Figure 1: A) RDMs for five identities with 150 images for each and
B) MDS showing face-identity selectivity resembling face patch AM.
C) RDMs for the same model on a dataset including human faces,
monkey faces, and non-faces with D) MDS showed differentiation
among face identities emerging only late in the process. E) and F)
Models trained on object recognition did not exhibit the late response.

Kawano, 1999; Shi et al., 2023) where the representational
geometry evolves from face detection (separating faces from
non-faces) to face identification (separating different face iden-
tities). In this work we set to examine the plausibility of this
view in recurrent convolutional neural networks (RCNNs).

Feedforward DNNs correspond in their feature selectivity
across layers to the brain areas in the hierarchy of the ventral
pathway (V1-V2-V4-IT) (Khaligh-Razavi & Kriegeskorte, 2014;
Yamins et al., 2014). However these models cannot capture
the dynamics of neural response within each layer due to a
lack of recurrent connections (Kietzmann et al., 2019). In or-
der to study the dynamic signatures of recognition, we test
RCNNs trained with different objectives.



Methods
We built four-layer fully convolutional neural networks inspired
by both the BL model of (Spoerer, McClure, & Kriegeskorte,
2017) and the CORNet-RT model (Kubilius et al., 2018). The
four convolutional layers coarsely correspond to the stages in
the ventral pathway. Each network layer receives both bottom-
up (B) input and lateral (L) input representing the state of the
layer at the previous time step. All layers go through 8 steps of
recurrence. The computational graph follows the principle of
biological unrolling (Kubilius et al., 2018; Spoerer, Kietzmann,
Mehrer, Charest, & Kriegeskorte, 2020), so the input reaches
the final layer after 3 steps of processing. Global average
pooling is applied to the convolutional maps in the last layer
which is then linearly read out for recognition. We trained the
model for face identification (using the VGGFace2 dataset),
object-category recognition (using the Imagenet dataset), or
a combination of both tasks. We matched the total number of
training images across the three training conditions.

Results
First, using representational similarity analysis, we found that
models trained on face recognition, but not models trained
on general object recognition, when tested on a held-out set,
show face-identity selectivity resembling primate face patch
AM (Fig. 1)(Freiwald & Tsao, 2010). Visualization of the repre-
sentational space using multidimensional scaling (MDS, met-
ric stress objective) further showed the emergence of identity
clusters over timesteps. Next we tested the same models on
a dataset including human faces, monkey faces, and non-face
objects (Vinken et al., 2023). The representational dissimilar-
ity matrices (RDMs, Euclidean distance) showed distinctions
among human face identities emerging only late in the pro-
cess. In earlier steps, the representational geometry sepa-
rates the objects from the faces, and in later steps the dif-
ferences among face identities come to be prevalently repre-
sented.

Next we tested whether mirror symmetric viewpoint tuning
as observed in monkey face patch AL (Freiwald & Tsao, 2010)
is present in these models. Fig. 2A left shows a synthetic
RDM for such a response. We selected 25 identities from FEI
dataset (do Amaral, Fı́garo-Garcia, Gattas, & Thomaz, 2016)
and clustered them by face orientation. Faces that have the
same orientation (e.g. 90 deg) or mirror symmetric orientation
(-90 deg) would have smaller dissimilarity, hence darker col-
ors in the RDM. Fig. 2A right shows the expected geometry
if the neurons are purely identity selective. We looked at the
RDMs for two models, one trained only for face identification
(Fig. 2B) and another trained on both face identification and
object recognition (Fig. 2C). For both models the identity se-
lectivity becomes more prominent in higher layers and later
steps with the model trained only for face identification show-
ing a stronger effect. The model trained for both face iden-
tification and object recognition, however, shows a stronger
signature of mirror symmetric response in its intermediate rep-
resentation. Models trained for only object recognition do not
show either of these signature patterns (not visualized).

Figure 2: A) Synthetic RDMs showing representation geometry for
mirror symmetric and identity selective cells. Faces from 25 differ-
ent identities are clustered by the their orientation. B) RDMS over 5
timesteps for the 4 layers of a network trained for face identification.
C) RDMs for a network trained for both face identification and and
object recognition.

Discussion

We found that recurrent convolutional models trained on both
face recognition and object-category recognition show a dy-
namic response that first emphasizes categorical distinctions
and later individuates faces. This suggests that early domain-
general processing establishes the category of the objects
and provides the basis for engagement of domain-specific
computations supporting identification (Sugase et al., 1999;
Freiwald & Tsao, 2010; Kriegeskorte, Formisano, Sorger, &
Goebel, 2007).
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