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Abstract: 

Drawing insights from neuronal processes is integral for 
understanding the neural mechanisms underlying 
cognitive processes, providing a higher definition 
recording for brain-computer interfaces, and helping 
develop advanced neurorehabilitation strategies. Our 
study sought to survey and identify machine-learning 
models and deep-learning architectures capable of 
predicting visual stimuli based on the spike patterns of 
single neurons. We worked with Neuropixel data from the 
Allen Brain Observatory [1,2] consisting of the firing 
rates from single neurons, also called spike trains, from 
several male mice's visual cortex, thalamus, and 
hippocampus. Each recording involved around 2,000 
separate units. The mice were shown 118 different 
natural images of predators, foliage, and other scenes 
from their natural habitat at random in repetition and for 
250 ms each. The firing rates of the separate units were 
then used as predictors for the shown images. A Long 
Short-Term Memory (LSTM) network provided the 
highest accuracy, with up to 96.6% accuracy. Other 
architectures, such as Transformer networks and Graph 
Attention Networks, had prediction accuracies of over 
90%. 
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Introduction 

 Drawing insights from neuronal processes is 
integral for understanding the neural mechanisms 
underlying cognitive processes, providing a 
higher definition recording for brain-computer 
interfaces, and helping develop advanced 
neurorehabilitation strategies. Our study sought to 
survey and identify machine-learning models and 
deep-learning architectures capable of predicting 
visual stimuli based on the spike patterns of single 

neurons. We worked with Neuropixel data from 
the Allen Brain Observatory [1,2] consisting of 
the firing rates from single neurons, also called 
spike trains, from several male mice's visual 
cortex, thalamus, and hippocampus. Each 
recording involved around 2,000 separate units. 
The mice were shown 118 different natural 
images of predators, foliage, and other scenes 
from their natural habitat at random in repetition 
and for 250 ms each. The firing rates of the 
separate units were then used as predictors for the 
shown images. (Figure 1) 

Results 

We assessed the prediction performance on test 
data for various machine and deep learning 
architectures built on training data. A random 
guess was associated with a baseline test accuracy 
of 1/118 = 0.85%. Support Vector Machine and 
Principal Component Regression had minimal 
success. A single-layer neural network (NN) on 
aggregate firing rates over the length of a visual 
stimulus resulted in a test accuracy of 93%. The 
test accuracy of multi-layer NNs would diminish 
for each layer added.  To test the utility of spatial 
modeling, a single-layer Graph Convolutional 
Network (GCN) and a graph attention (GAT) 
network were tried with 48% and 89.8% 
accuracies, respectively.  A Long Short-Term 
Memory network was tested to consider the 
temporal aspect of the data. The firing rates 

Figure 1: Methodology overview and model performance for predicting visual stimuli from 
neuronal spike trains.  

 



during a single stimulus were broken into ten time 
bins for models with a temporal component. The 
LSTM produced the highest test accuracy at 
96.6%. A transformer was also tested, which may 
account for the spatial aspect through its attention 
mechanisms and the sequential nature of the data. 
This had a related test accuracy of 93%. 
 
A Spatial-Temporal Graph Attention Network 
(ST-GAT) was also implemented to account for 
both the spatial and temporal aspects. It accounts 
for the spatial aspects through the first layer, the 
GAT. The output is then passed through the 
LSTM to account for temporal data. The ST-GAT 
produced a test accuracy of 92.4%.  This model 
allows for an adjacency matrix to be found 
through backpropagation, potentially representing 
functional connectomics between single neurons 
[3]. (Figure 2) 
 

 

Figure 2: An architecture overview of a Spatial-
Temporal Graph Attention Network (ST-GAT). 
Showing the ability to find graph edges during 

training. In this case the edges are the connection 
between single neurons or units. 

 

Discussion 

We have found that architectures with fewer 
layers, including NNs, LSTMs, and Transformers, 
consistently demonstrated higher test accuracies 
than their multi-layered counterparts, which had 
many more parameters and likely overfitted by 
capturing noise in the data. Additionally, the 
success of LSTM and Transformers suggests that 
including a temporal component allows models to 
handle the sequential nature of neural data, 
increasing prediction accuracy. Our results were 
consistent across several mice.  
 
Both machine learning models, Support Vector 
Machines and Principal Component Regression, 
performed worse than all other deep learning-
based models. The ability to tune multiple weights 
to specific neurons might account for the relative 
success of deep learning architectures over 
machine learning models. This supports their 
strength in modeling spike train data. 
 
Our results provide key insights into the 
compatibility of different learning architectures in 
drawing valid conclusions about function from 
neural data at the micro-level. Single-layer neural 
Networks, Transformers, LSTMs, and Spatial-
Temporal Graph Neural Networks can all predict 
visual stimuli with up to 96.6% accuracy. Given 
related neural responses, similar modeling may be 
extended to predict other functions in mice and 
humans more broadly.   
 
The code for this project can be found at the 
following repository: 
https://github.com/RayCarpenterIII/Neuropixel-
Analysis 
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